Speaker
Description
The unprecendented precision goal of the future FCC-ee machine in key measurements in the Standard Model and beyond will require that the accelerator luminosity is know with extremely high accuracy, at the $10^{-4}$ level and even better. In this context, QED processes (and their accurate theoretical prediction) play the role of precise luminosity monitoring processes: together with the standard Bhabha scattering, used in the past at LEP and flavour factories, it is interesting and worthwhile to consider also the $e^+e^-\to\gamma\gamma$ process, which, despite a lower statistics than Bhabha, can be predicted with very high accuracy. In this presentation, the current status of $e^+e^-\to\gamma\gamma$ calculations and Monte Carlo tools will be reviewed and the perspective for future theory improvements will be traced and discussed in detail.