The presentation introduces the concepts of the secondary and tertiary beams for the use as test beams. It describes the generation of the test beams by interaction of primary or secondary beam with e.g. a target, converter, radiator or absorber and explains the parameters of particle production. The design of secondary and tertiary beamlines is presented, including the methods for selection...
Calorimeters play a crucial role in modern collider experiments, evolving from energy measurement to a complex role involving background rejection, pattern recognition and event reconstruction. Test beams play an important role in the development of calorimeters, for the validation of technology and performance as well as for the validation and development of detector simulations and...
This contribution gives an overview of the silicon detectors at CERN’s HL-LHC and future colliders emphasising technological challenges and test beam efforts.
The East Area is among the oldest and longest-operating CERN’s facilities, in which beam tests, experiments and irradiations are hosted since the 1960’s. The primary beam is extracted from the Proton Synchrotron, from which a 24 GeV/c proton beam is directed either towards the IRRAD and CHARM irradiation facilities or towards a primary target to produce three secondary beams. These beams of up...
During its first run, in the period 2014-2018, the CERN Proton Irradiation Facility (IRRAD) in the PS East Area has been heavily used for performing irradiations of particle detectors, electronic components and materials. More than 2500 elements were tested and irradiated during this run. During the Long Shutdown 2 (LS2) from 2019 to summer 2021, the IRRAD facility will undergo several...
The Gamma Irradiation Facility (GIF++) is a mixed photon/muon irradiation facility designed for the needs of the particle detector community working with muon detectors, especially the upgrade programs of the LHC experiments for the HL-LHC. Inside a shielding bunker it hosts a nominal 14 TBq Cs Irradiator, operated throughout the year. In addition, a medium intensity muon beam is provided...
The North Area facilities, hosting the secondary beam lines and experimental areas of the SPS complex are invaluable assets for the present and future of CERN’s research program. Following the 2016 Chamonix Workshop and Consolidation day, which highlighted the need for urgent renovation and upgrade measures, the CERN EN-EA group received the mandate to lead a study for the North Experimental...
Containerization software has been proved to be an interesting approach to facilitate the creation, deployment and run applications, reducing time-consumption tasks like, for instance, software installation, error reproducibility or software maintenance.
The DAQ software for telescopes and DUTs is an excellent candidate to be "dockerize", as it will minimize usual bottle necks in the DAQ...
A dedicated irradiation programme followed by detailed studies with particle beam are essential for proper evaluation of detector prototypes and predict their performance after accumulating the design fluence.
In order to perform precise measuremens with the LHCb VELO detector prototypes a dedicated high resolution pixel beam telescope was developed based on 8 Timepix3 detector planes. This...
The upgrade of the calorimeters for the High Luminosity LHC (HL-LHC) or for future colliders requires an extensive programme of tests to qualify different detector prototypes with dedicated test beams. A common data-acquisition system (called H4DAQ) was developed for the H4 test beam line of the CERN SPS North Area in 2014, and it has since been adopted by an increasing number of teams...
Corryvreckan is a modular reconstruction framework developed for test beam data analysis within the CLICdp collaboration. It has been created in the same spirit as Allpix squared, and thus shares its philosophies of high configurability and flexibility, user-friendliness, and high standard of documentation. Corryvreckan’s modular structure allows for separation between the framework core and...
The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the current instantaneous luminosity by a factor of 5 to 7. The resulting large integrated luminosity will provide a great opportunity to search for rare processes. To cope with the increase in particle density CMS will build new silicon tracking devices with higher granularity to reduce occupancy, improved...
The muon collider idea was born some decades ago, but nowadays it is very attractive since such a machine would provide both a high centre of mass energy, typical of hadron accelerators, and a clean experimental environment, typical of lepton machines.
Thanks to its features, the muon collider can help to consolidate the present knowledge of the Standard Model of particle physics (SM) and...
EUDET-type beam telescopes are widely used by test beam users. Based on six Mimosa26 sensors they provide a high-spatial resolution and a simple integration for users. The infrastructure comes with three pillars: the hardware for mechanical mounting of user devices and a trigger communication to the EUDET/AIDA TLU, the EUDAQ software as a top-level DAQ framework and the EUTelescope software...
Scope of the tutorial
In this tutorial, the participant will learn how to reconstruct particle tracks of the EUDET-type telescopes with the EUTelescope framework.
EUTelescope has many functionalities to reconstruct your taken testbeam data step by step. After converting the raw data (interface to EUDAQ), it is possible to cluster event entries and form hits on the telescope planes. For...
Corryvreckan is a data reconstruction software developed for test beam data analysis. This tutorial will guide you through the framework of Corryvreckan and what functionality it possesses. You will learn how to configure your analysis, obtain result plots for your devices under test, and how to monitor your data quality during data taking. Some of the unique features of Corryvreckan will also...
Scope of the tutorial
In this tutorial, the participant will use the EUTelescope framework to reconstruct particle tracks of the EUDET-type telescopes, in order to test the response of an active DUT.
After converting the raw data to the LCIO data format using EUDAQ, the hits from the detector are grouped into clusters and then transformed into hits in the global coordinate system of the...
The DESY II Test Beam Facility will resume operations beginning February 2019. The current status and possibilities for future improvements and extensions of the facility will be presented.
Additionally, we show recent results on characterization measurements on the time structure and explain its convolution.
The three beam lines of the DESY II Test Beam Facility provide electrons with a selectable momentum of 1-6 GeV/c and are widely used in the R&D community of HEP. A feasability study for a photon tagged beam line was performed this year. Here, secondary bremsstrahlung photons are generated in the test beam area and electrons are a deflected by the Big Red Magnet of beam line TB21. With such a...
The improvements of the Frascati beam-test facility (BTF) are based on the splitting of the existing beam-line: adding a second branch in the BTF it will be possible to run in parallel two different setups. This is realized by splitting the beam with a pulsed 15° dipole (<100 ms ramp) and a two-way vacuum pipe, and with a second set of beam diagnostics for the monitoring of the beam intensity,...
The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. Two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In the past year, the facility has added an integrated DAQ that includes our silicon...
The DESY II Test Beam Facility is one of few facilities around the world capable of providing multi GeV particle beams. It is, as such, a key component in current detector development.
As part of the AIDA2020 project, the LYCORIS telescope was designed based on a hybrid-less silicon strip tracker with a strip pitch of $25 \, \mu \mathrm{m}$ and an active area of $9.3 \times 9.3 \,...
The main features of the high performance INSULAb telescope are presented. The detector consists of several silicon microstrip layers with different widths and pitches, thus guaranteeing a good compromise between high spatial resolution (down to $\sim 5~\mu\mbox{m}$ for smaller layers owing to analog readout and floating strip scheme) and wide transverse coverage (up to $\sim 10 \times...
A beam telescope based on the Timepix3 ASIC was built in order to perform detailed studies of VELO Upgrade prototypes using charged particle beams. The telescope consists of 8 planes of hybrid pixel detectors with 300 um p-on-n silicon sensors, designed to cope with high particle rates using a DAQ system based on Xilinx Virtex 7 FPGA development boards. Tracks measured with the telescope have...
Mu3e is going to hunt for the charge lepton flavour violating decay of a antimuon into two positrons and an electron. A high rate of 10^8 muons/s is stopped on a target and the decay vertex as well as the decay particles momenta are reconstructed in a thin four layer pixel tracker in a magnetic field.
High-Voltage monolithic active pixel sensors are chosen as baseline for the tracker as they...
A hyper-precise time reference is needed for characterization measurements of precise timing detector prototypes. The reference detector is normally placed together with a device under test (DUT) in a beam telescope. The time resolution of this reference detector should be considerably better than the time resolution of the DUT. Measurements with MCP-PMTs of the type R3809U-50 by Hamamatsu...
The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) has been operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and a bunch spacing of 25 ns since 2015. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the design and R&D studies for the...
The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to L ≃ 7.5 × 1034 cm−2 s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction and trigger performance for electrons, photons as well as jets and...
The upgrades ATLAS and CMS for the High Luminosity LHC (HL-LHC) highlighted physics objects timing as a tool to resolve primary interactions within a bunch crossing. Since the expected pile-up is around 200, with an rms time spread of 170ps, a time resolution of about 30ps is needed. The timing detectors will experience a 1-MeV neutron equivalent fluence of $\Phi_{eq}=10^{14}$ and...
Several CVD diamond detectors irradiated up to fluence of 5$\cdot $10$^{15}$ protons/cm$^2$ were tested with a 180 GeV pion beam at the Northern Area at CERN in 2018. The main objective was to observe the effect of irradiation on the signal amplitude spectrum with electronics designed for timing purposes.
Many of the detectors were attached to the front-end electronics with a bond- and...
The ATLASpix_Simple is a Monolithic Active Pixel Sensor prototype produced in a commercial 180nm HV-CMOS process. It contains a self-triggered 25 x 400 pixel array with a pixel size of 130 um x 40 um.
The chip features tunable in-pixel comparators and a digital periphery allowing for on-chip hit digitization.
In order to characterize the chip and investigate its performance with respect to...
The Mainz Microtron (MAMI) is an electron accelerator at the Institute for Nuclear Physics in Mainz, that provides beam energies of up to 1.6 GeV. With its narrow beam profile, quasi continuous stream of particles and beam currents of up to 100 $\mu$A it is well suited for diverse test beam applications. One of them is the high rate testing of detector prototypes.
The talk discusses tests that...
MALTA is a novel monolithic active pixel CMOS sensor chip designed in TowwerJazz 180nm imaging technology for the phase II upgrade of the ATLAS Inner Tracker (ITk) detector. A MALTA telescope has been developed with 6 planes. In this contribution we will review the performance of the telescope in terms of spacial resolution and timing and will be compared with simulations. The results show...
The CMS collaboration has decided to replace the current endcap calorimeters with a new High Granularity Calorimeter (HGCAL) for operations at the High Luminosity LHC (HL-LHC). To validate the design of the HGCAL, prototype detector modules based on silicon pad sensors have been manufactured and tested extensively both in the laboratory and in beam tests. Each prototype module has 128 channels...
The AIDA-2020 Trigger/timing Logic Unit (TLU) was developed as a successor to the EUDET TLU. It can accept signals to from PMT, NIM or TTL sources and generate a trigger for up to four devices under test (DUTs).
The interface with the DUT can either be an asynchronous two way ( trigger/busy ) handshake used for the EUDET TLU or a synchronous interface with clock , trigger and synchronisation...
** Please bring your Laptop to the tutorial (optionally with a ROOT6 (or 5) installation/binary for the Online Monitor) **
The EUDAQ framework and the TLU are two main components for EUDET-type telescopes. Both are coming with defined interfaces for user integration.
Slight changes for the users come with the second version of EUDAQ2 and the AIDA TLU. In this tutorial we will go through the...
As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including 28 layers of silicon pad and 24 layers of silicon+scintillator detectors interspersed with metal absorber plates. In 2018, beam tests of different sampling configurations made from these...
The High Luminosity Large Hadron Collider (HL-LHC) is expected to start in 2026 the delivery of 3-4/ab of proton-proton collisions with up to 200 collisions per proton bunch crossing.
The electronics of the ATLAS Tile Calorimeter has to be upgraded to cope with longer latencies of up to 35 µs needed by the trigger system at such high pileup levels and higher read-out rates. The expected...
The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator instantaneous luminosity by a factor of 10. Due to the expected higher radiation levels, aging of the current electronics and to provide the capability of coping with longer latencies of up to 35 µs needed by the trigger system at such high pileup levels, a new readout system of the ATLAS Tile Calorimeter...
The Analogue Hadron Calorimeter (AHCAL) developed by the CALICE collaboration is a scalable engineering prototype for a Linear Collider detector. It is a sampling calorimeter of steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers (SiPMs) as active material (SiPM-on-tile). The front-end chips are integrated into the active layers of the calorimeter and are...
The Scintillating Fibre (SciFi) Tracker is designed to replace the current downstream tracking detectors in the LHCb Upgrade during 2019-20 (CERN/LHCC 2014-001; LHCb TDR 15). Collecting data at the increased luminosity foreseen for the upgrade will only be possible with front-end electronics read out at 40MHz and a flexible software-based triggering system that will increase the data rate as...
The ATLAS detector at CERN will undergo several updates for the High Luminosity phase of LHC in 2023. A completely new silicon tracker (ITk) will be installed, furthermore a new timing detector called High Granularity Timing Detector (HGTD) composed of 2 layers of high timing precision silicon detectors (LGADs) will be placed in the end-cap region of the detector.
The SLAC beamline in the end...
The ATLAS detector at CERN will undergo several updates for the High Luminosity phase of LHC in 2023. A completely new silicon tracker (ITk) will be installed.
Pixel modules built with the RD53A chip and planar sensors were studied using the EUDET telescope for reference tracks. Sensor thicknesses of 100 and 150 microns were investigated. Pixel sizes of 50 microns x 50 microns and 25 microns...
During the High-Luminosity phase of the LHC conditions for the ATLAS tracking system will be severe in terms of radiation and occupancy, with the goal of accumulating a total of more than 4000 fb$^{-1}$ of data and up to 200 inelastic proton-proton interactions per beam crossing. In order to deal with these conditions, the entire tracking system will be replaced by a new all-silicon detector...
Planar n+-in-n silicon pixel sensors used in tracking detectors like the ATLAS Inner Detector need a high efficiency to detect most of the traversing particles. Based on the IBL pixel design with a pitch of 250 µm x 50 µm new designs with modified n+-implants or bias grid modifications were developed in Dortmund to investigate the effects on the efficiency.
Several different modified designs...
The high luminosity upgrade of the LHC will lead to an increased multiplicity of proton-proton interactions, with up to 200 events per beam bunch crossing, in the CMS experiment.
The irradiation level that the detectors will have to withstand will reach a 1MeV neutron equivalent fluence of 2 $\times$ 10$^{16}$ n$_{eq}$/cm$^2$ at the innermost part of the CMS pixel detector, at 2.8 cm distance...
Radiation therapy is an important tool in the treatment of cancer tumors. During this treatment, the tumor is destroyed by irradiating it with photons or hadrons (protons or heavier nuclei). In hadron therapy, the organs surrounding the tumor receive a smaller dose than in the treatment done with photons; however, to plan such a treatment the energy loss of hadrons in the surrounding tissue...
Embedded pitch adapters (EPA) are used to adjust the bonding pattern of segmented sensors to the bonding pattern of read-out chips. In this way the sensor geometry can be made independent of the bonding pattern of the read-out chips. This can be very useful for challenging sensor geometries like radial strip sensors which are used in the end-caps of the trackers of several experiments and for...
The LHC at CERN plans to have a series of upgrades to increase its instantaneous luminosity to 7.5×1034 cm−2s−1. The ATLAS experiment will upgrade its inner end-cap muon chambers to cope with the increased collision rate expected from the High-Luminosity-LHC. This project, called New Small Wheel, includes resistive Micromegas chambers together with small-strip Thin Gap Chambers (sTGC),...
A High Pressure gas Time Projection Chamber (HPTPC) is a candidate for use as a near detector for future long baseline neutrino experiments such as the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). Seeking to reduce neutrino-nucleus interaction uncertainties provides the major motivation for researching and developing an HPTPC as a neutrino...
The environment of test beam facilities and the utilization of high-resolution beam telescopes enable the application of a novel imaging technique, named Material Budget Imaging. This technique is based on the multiple Coulomb scattering of highly energetic charged particles in matter, leading to an effective deflection of the particles. Measuring the deflection angles and the incidence...