Estimating precise radial velocities due to orbiting exoplanets in the presence of stellar activity is a challenging statistical problem. As instrumentation continues to improve, allowing for the detection of sub meter-per-second shifts, the effect of stellar activity becomes more problematic because the stellar activity can cause distortions in the spectra that mimic the RV of an orbiting...
Since the discovery of the first extra-solar planet in 1995, Doppler spectroscopy proved to be one of the most successful methods in the search of exoplanets. With new high precision instruments like ESPRESSO and new data analysis methods, it will be possible to detect Earth-like planets on Sun-like stars with similar orbital parameters of Earth. Unfortunately, the search for exoplanets comes...
The eccentricity of a planet is a key information on its present dynamics and puts constraints on formation scenarios. However, eccentricity estimates are known to be subject to caution, for instance it has been shown that low eccentricities are on average overestimated. In this talk, we present a comprehensive study of the eccentricity estimation from radial velocity data and give conditions...
The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties (“labels”, i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool (<4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making...