Conveners
Accelerator techniques for medical isotope production
- Klaus Wendt (Johannes Gutenberg Universitaet Mainz (DE))
- Alexander Gottberg (TRIUMF (CA))
Presentation materials
In this contribution, an overview will be given of the different cyclotrons and electron accelerators produced by Ion Beam Application (IBA, Louvain-la-Neuve, Belgium) for radio-isotope production.
The 3 main cyclotrons for radio-isotope production are distinguished by their maximum beam energy : the Cyclone KIUBE delivers protons up to 18 MeV, the Cyclone 30(XP) delivers protons from 15 up to...
The MEDICIS facility mission is to become a European leading facility and CERN's main producer of non-conventional medical isotopes for research in cancer treatment and diagnosis. Current isotopes produced at MEDICIS include: 149Tb, 152Tb, 155Tb, 169Er and 165Tm and developments are being made to extend this list to 47Sc, 44Sc, 67Cu and 225Ac. The isotopes are either produced with CERN’s 1.4...
At INFN-LNL (Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Legnaro) a new facility for the production of radioactive ion beams is implemented, SPES (Selective Production of Exotic Species). This new facility, besides being operated for nuclear physics studies, may play a pivotal role in the production of medically relevant radionuclides by means of the ISOL (Isotope...
Molecular beams injected into the Radio-Frequency Quadrupole cooler and buncher (RFQcb), ISCOOL [1], at ISOLDE [2] have been studied under varying conditions. The extracted fragments were detected using the new Time-of-Flight (ToF) detector [3] placed approximately 10 meters downstream the extraction point of the RFQcb. When a beam of molecules is injected into the RFQcb and interacts with...
One limitation of the production of some radioisotope for medical use is the possibility to obtain them with a sufficient purity, not only in terms of chemical contaminant, but also in terms of isotopes. Different production techniques are available but at least for some particular isotopes, enriched primary matter is mandatory in order to achieve sufficient isotopic purity and not produce...
The state of the art in linac architecture at the low energy front has been developed quite a lot during the last decades. Frequency ranges and choices among available key components like amplifiers, controls and magnets have been extended. Room temperature as well as superconducting developments with high reliability are available now. The Pro's and Con's of alternative layouts will be...
The CERN-MEDICIS facility delivered its first radioactive batch for research in May 2018. Based on the ISOL method for radioactive ion beam production, MEDICIS relies on the CERN PS-Booster for target irradiation, but, unlike ISOLDE, it is not coupled ‘on-line’ to an isotope extraction system. Instead, targets are typically irradiated (while cold) at the ISOLDE proton beam dump location and...
The targeted treatment of cancerous tumors by alpha-emitting radionuclides has shown remarkable efficacy in recent clinical trials. It is likely that this treatment option will ultimately be applicable to a wide range of cancers and other diseases, subject to the development of specific carrier molecules. Currently Ac-225 is mainly produced from natural ingrowth in existing stocks of Th-229....