Conveners
Devices and Engineering for Radioisotopes Handling
- Ferid Haddad (Arronax)
Devices and Engineering for Radioisotopes Handling
- Keith Kershaw (CERN)
Presentation materials
The Medicis isotope production process relies on a sequence of remote handling operations involving several different devices which have been integrated to work together. The handling sequence starts with the introduction of a new target in the Medicis facility for irradiation in Isolde and ends with the transfer of the collected isotopes into a fume cupboard in the Medicis laboratory area. ...
With over five decades of experience in the production of accelerator-based isotopes for science, TRIUMF also ensures that Canada remains on the leading edge of research and development of isotopes applied to nuclear medicine. TRIUMF’s medical isotope program is primed to develop alternative tools and methods to meet the growing demand for life-saving isotopes, and advance the design and...
The CERN-MEDICIS facility is aimed for the production of innovative medical radioisotopes. The dedicated electromagnetic mass separator allows to selectively extract a desired isotope from all others of the same element, what is inaccessible for chemical separation methods. It is foreseen to handle working materials, which are either irradiated at the CERN-ISOLDE target station or provided...
Type B packages are required for the transport of radionuclides with activity higher than the limits described by the current European Regulation1, named A1 and A2. The homologation for a Type B container can be obtained only after having proved, via strict tests described by the International Atomic Energy Agency (IAEA), the radioprotection and the mechanical resistance in normal and...
Radionuclides play a major role in research applications, in environmental studies and in industrial applications as sources as well as in nuclear medicine imaging and therapy. The United States Department of Energy (DOE) isotope program has a long history of utilizing its unique national laboratory facilities and expertise to develop and supply radionuclides that are in high demand and...
CERN-MEDICIS is a CERN facility dedicated to the production of isotopes for medical research in a very pure form. Such radioisotopes are produced in ISOLDE target production area by taking advantage of the 1.4Gev proton beam with low energy degradation which is still available after ISOLDE target interaction before reaching the dump. MEDICIS targets are designed to be larger than ISOLDE...
Trend of producing radionuclides for medical applications for both diagnostic and therapeutic purposes is on the rise. Amongst all medical radioisotopes, Mo-99/Tc-99m is the power hub of all nuclear medicines as it is being used in 80% of the nuclear procedures worldwide. I have been involved in production of Mo-99/Tc-99m Generators for the last twelve years in Pakistan. My institute is...
Our project is devoted to a new medical imaging modality based on a revolutionary technology combining the sensitivity of γ detection and the spatial resolution and flexibility of MRI. This modality, the so-called γ-MRI, goes beyond the present technological paradigms in molecular imaging. It is not just a hybrid approach joining two separate modalities into one complex machine (like for...
The Isotope Separator On-Line DEvice ISOLDE is a facility dedicated to the production of radioactive ion beams at CERN. With over 50 years of experience, ISOLDE is able to deliver more than 1000 different isotopes of 74 chemical elements used for experiments in various fields such as nuclear and atomic physics, material science and nuclear medicine.
Radionuclides are produced by irradiating...