Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

1–6 Sept 2019
University of Surrey
Europe/London timezone

Theory of three and four body quantum dots in Monolayer Transition Metal Dichalcogenides

3 Sept 2019, 14:55
20m
University of Surrey

University of Surrey

Speaker

Dr Shalva Tsiklauri (The City University of New york-BMCC)

Description

In latest years, there have been a promptly increasing number of experimental and theoretical publications focusing on transition metal dichalcogenides (TMD) crystals. Quantum dots TMD have the potential to combine the essential features of both optically active and electrically defined quantum dots. Strong electron–hole binding in TMDs suggests that it would be possible to obtain a discrete spectrum due to trapping of trions and biexcitons in strong electric or magnetic fields. The properties of the charged excitons and biexcitons in a parabolic quantum dot in an external magnetic field are studied using an effective-mass Hamiltonian. The Hamiltonian is written in terms of the center of mass and relative coordinates. The Schrödinger equation for electron – hole systems in a quantum dot in a magnetic field was solved in the framework of the hyperspherical functions method. We assume that electrons and holes are interacted via Ritova- Keldysh potential [1]. It is shown that the ground state properties are approximately determined by that part of the total Hamiltonian that depends only on relative coordinates.
[1]. N. S. Rytova, Proc. MSU Phys., Astron. 3, 30, (1967); L.V.Keldysh, JETP Lett. 29, 658, (1979).

Primary author

Dr Shalva Tsiklauri (The City University of New york-BMCC)

Presentation materials

There are no materials yet.