Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

1–6 Sept 2019
University of Surrey
Europe/London timezone

Towards Renormalization Invariant Equation of State of Nuclear Matter

3 Sept 2019, 14:30
20m
University of Surrey

University of Surrey

Speaker

Dr Mehdi Drissi (University of Surrey)

Description

The current paradigm to describe the nuclear interaction is within the frame of Chiral Effective Field Theory (χEFT) which organizes contributions to nuclear observables in a series of decreasing importance. Within this framework the leading contribution already requires to solve exactly the many-body Schrödinger equation with a particular Hamiltonian. Nevertheless, such calculations are numerically intractable for A-body observables whenever A ≫ 10.

Consequently, following the EFT program to describe infinite nuclear matter, and in particular its Equation of State (EoS), appears to be challenging. In this talk I will focus in particular on Many-body Perturbation Theory (MBPT) and more generally on many-body approximations that can be expressed as a sum of perturbation diagrams. Such additional approximations depart from the original EFT program. The goal of this talk is thus to emphasize the impact of many-body approximation on the renormalization invariance of many-body observables. I will also present new formal developments that pave the way to a systematic approach for renormalization-invariant many-body calculations. In practice, these developments could lead, in the near future, to a reduction of systematic theoretical uncertainties of nuclear many-body observables.

Primary author

Dr Mehdi Drissi (University of Surrey)

Presentation materials

There are no materials yet.