The out-of-equilibrium dynamics of quantum systems is one of the most fascinating problems in physics, with outstanding open questions on issues such as relaxation to equilibrium. An area of particular interest concerns few-body systems, where quantum and thermal fluctuations are expected to be more relevant and play an important role in the efficient design of novel quantum...
We show a powerful experimental technique to study Efimov physics at positive scattering lengths in a gas of ultracold atoms. We use the Feshbach dimers as a local reference for Efimov trimers by creating a coherent superposition of both states. Measurement of its coherent evolution provides information on the binding energy of the trimers with unprecedented precision and yields access to...
The recent experimental advancement to realise ultracold gases scattering off a quasicrystalline optical potential [Phys. Rev. Lett. 122, 110404 (2019)] heralds the beginning of a new technique to study the properties of quasicrystal structures. Quasicrystals possess long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts....
The nodes theorem provides a relation between the quantum number of a given bound state and the number of nodes of its wave function. We describe here a family of non-local potentials, with analytical known solutions, whose spectra can be modified at will. For these potentials, there is no relation between the quantum number of a state and its number of nodes. The existence of these potentials...