Conveners
Poster Session 4 (Position Sensitive Fast Timing Detectors)
- Philip Patrick Allport (University of Birmingham (UK))
- Ioannis Kopsalis (University of Birmingham (GB))
Description
Position Sensitive Fast Timing Detectors
We report on the layout and performance of Low-Gain Avalanche Detectors (LGAD) produced for the ATLAS High Granularity Timing Detector (HGTD) foreseen for the HL-LHC upgrade of the ATLAS experiment. The HGTD is a multi-layer silicon-based detector with a total active area of 6.4 m2 covering the pseudo-rapidity region between 2.4 and 4.0 with timing sensors with primary resolution of at least...
The work is dedicated to the discussion of the possibility of creating a position-sensitive detector
with both high coordinate reconstruction and time resolution. The work is presented the simulation
results and the experimentally obtained data for a prototype detector on the basis of
a multianode PMT MA-20 and a linear assembly of scintillating crystal or plastic strips.
The...
To meet the needs arising from the high-rate environments in current and future accelerators, detectors with high precision timing capabilities are of utmost importance. Dedicated R&D effort is carried out, resulting in novel detector technologies with excellent timing capabilities. Gaseous detectors instrumentation contributes to this effort and an example is the PICOSEC-Micromegas, which has...
The development of a Time Correlated Single Photon Counting (TCSPC) camera with 256 channels has enabled several applications where single photon sensitivity is crucial, such as LiDAR, Fluorescent Lifetime IMaging (FLIM) and Quantum Information Systems. The microchannel plate-based Multi-Anode Photo-Multiplier Tube (MAPMT) is a 16 × 16 array of 1.656 mm pitch pixels with an active anode area...
Photon counting detectors are essential for many applications, including astronomy, medical imaging, nuclear and particle physics. An extremely important characteristic of photon counting detectors is the method of electron multiplication.
In vacuum tubes such as photomultiplier tubes (PMTs) and microchannel plates (MCPs), secondary electron emission (SEE) provides electron multiplication...
With Atomic Layer Deposition (ALD) MEMS technology, thin multilayers have been realised which emit, after the absorption of an energetic electron at the top side, a multiple of secondary electrons at the bottom (emitting) side. In order to avoid charge-up effects, one of the layers has the function to replenish electrons and is therefore a conductor. With ALD MgO, a transmission secondary...
In this contribution we describe the second run of RSD (Resistive AC-Coupled Silicon Detectrors) designed by INFN Torino and produced by FBK, Trento.
RSD are $n$-in-$p$ detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. They are characterized by three key-elements, (i) a continuous gain...
The ATLAS Forward Proton (AFP) project extends the forward physics program of the multipurpose ATLAS detector located at LHC in CERN. The time-of-flight (ToF) detector measures the time delay of the detected high-energy protons (HEPs) during the multiple proton-proton collisions. Due to the high luminosity at LHC the number of events detected by ToF is enormous as well as the amount of data...
The International Linear Collider (ILC) is an electron-positron collider planned to be constructed in Japan. The ILC detectors are designed with particle flow concept, which utilizes highly-granular calorimeters to separate showers in jets. We are studying to use Low Gain Avalanche Detectors (LGADs) for the sensitive layer of the electromagnetic calorimeter of ILC detectors. Timing resolution...
The Time-of-Flight (ToF) detectors of the ATLAS Forward Proton (AFP) system are designed to measure the primary vertex z-position of the pp -> pXp processes by comparing the arrival times measured in the ToF of the two intact protons in the final state.
We present the results obtained from a performance study of the AFP ToF detector operation in 2017. A time resolutions of individual...
The need for 4D (fast timing in addition to 3D resolution in space) silicon particle detectors has become very apparent with the introduction of the High-Luminosity (HL) upgrade at the LHC. Timings on the order of tens of picoseconds will allow better reconstruction of the ~200 primary vertices along the beam line in every bunch crossing. Correct association of tracks with primary vertices is...