We have performed Doppler-free two-photon spectroscopy of cold, trapped HD$^+$ ions to measure a ro-vibrational transition frequency with a relative uncertainty of a few parts-per-trillion. Using highly precise ab-initio calculations [1], these measurements allow – for the first time – to determine the proton-electron mass ratio, $\mu$, from molecular spectroscopy with a precision...
Collinear laser spectroscopy (CLS) is a powerful tool to access nuclear ground state properties of short-lived radionuclides by measuring the atomic or ionic hyperfine structure [1,2]. This technique uses fast (~30 keV) beams to minimize the Doppler broadening and thus, approaching the natural linewidth which is necessary to resolve the hyperfine structure. However, in order to explore the...
Atomic mass measurements are vital to improve our understanding of the nuclear structure, astrophysical reaction paths, and test predictions of physics beyond Standard model. The measurement Penning trap at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN) facility is dedicated to performing high-precision mass measurements of short-lived radioactive isotopes. With the availability of...