We present progress towards improved microwave driven quantum logic gate speeds and fidelities in a next-generation surface-electrode ion-trap.
Trapped ions are a leading candidate for building a general-purpose quantum computer [1]. As spontaneous emission is an incoherent process, good candidate qubits for such a device are separated by a dipole forbidden transition. Common choices are...
Entangling operations are a necessary tool for large-scale quantum information processing, but experimental imperfections can prevent current schemes from reaching sufficient fidelities as the number of qubits is increased. Previous theoretical and experimental work has considered classes of errors including static offsets in the motional frequency, heating of the bus mode and timing errors...
The simultaneous trapping of two different species of ion allows the manipulation of one species without corruption of the electronic state of the other. Mixed-species systems therefore provide access to powerful tools such as sympathetic cooling and low cross-talk or quantum non-demolition measurement [1]. A high-fidelity entangling gate between two species offers the freedom to select ions...