The central Barrel Timing Layer (BTL) will be based on LYSO:Ce crystals read out with silicon photomultipliers (SiPMs). The BTL will use elongated crystal bars, with double-sided read out, with a SiPM on each end of the crystal, in order to maximize detector performance within the constraints of space, cost, and channel count. We will present an overview of the MTD BTL design, detailed in the...
We present new light yield and uniformity measurements of hexagonal scintillator tiles since they provide a better match to the cells of the SiD electromagnetic calorimeter. They also yield a better signal-to-noise ratio than square tiles. We use three different readout schemes: via a Y11 fiber, a directly coupled SiPM at the center of the tile in a dimple and a SIPM attached to the side of...
Japan’s KEK laboratory started developing silica aerogels as a Cherenkov radiator around 1980. The high-energy physics group at Chiba University began aerogel R&D 15 years ago, collaborating with KEK. Improving aerogel transparency enables the design of state-of-the-art ring-imaging Cherenkov (RICH) detectors. This study was first motivated by the radiator R&D for the Belle II Aerogel RICH...
Particle identification(PID) is crucial to particle physics experiments. The Ring Imaging Cherenkov(RICH) detector has been widely used for PID in a large momentum range, and long gaseous radiators are required to identify high-momentum particles. As to reduce the radiator length, a concept of windowless RICH was recently proposed and investigated.
In this work, a windowless RICH detector...
In recent years, significant progress has been made at LLNL in synthesizing a new class of plastic scintillators that support Pulse Shape Discrimination (PSD) and Li-6 doping. Two distinct chemistries have been developed to solubilize Li-6 compounds in organic solvents, in which they are typically insoluble. Elements as large as 40cm have been produced, with efforts continuing to improve...