Skip to main content
22–26 Aug 2022
Rio de Janeiro
America/Sao_Paulo timezone

Searching for the fundamental nature of dark matter in the cosmic large-scale structure

Not scheduled
20m
Rio de Janeiro

Rio de Janeiro

Vice-Governador Rúbens Berardo street, 100 - Gávea Rio de Janeiro - 22451-070
Plenary/Parallel talk Large scale structure Parallel Session Main Cupula: DM

Speaker

Keir Rogers

Description

The fundamental nature of dark matter so far eludes direct detection experiments, but it has left its imprint in the large-scale structure (LSS) of the Universe. Extracting this information requires accurate modelling of structure formation and careful handling of astrophysical uncertainties. I will present new bounds using the LSS on two compelling dark matter scenarios that are otherwise beyond the reach of direct detection. Ultra-light axion dark matter, particles with very low mass and astrophysically-sized wavelengths, is produced in high-energy models like string theory ("axiverse"). I will rule out axions that are proposed to resolve the so-called cold dark matter "small-scale crisis" (mass ~ 10^-22 eV) using the Lyman-alpha forest (mass > 2 x 10^-20 eV at 95% c.l.), but demonstrate how a mixed axion dark matter model (as produced in the string axiverse) could resolve the S_8 tension (mass ~ 10^-25 eV) using Planck, ACT and SPT CMB data and BOSS galaxy multipoles. Further, I will set the strongest limits to-date on the dark matter -- proton cross section for dark matter particles lighter than a proton (mass < GeV). The LSS model involves one-loop perturbation theory (EFT of LSS), a non-cold dark matter halo model and, to capture the smallest scales, a machine learning model called an "emulator", trained using hydrodynamical simulations and an active learning technique called Bayesian optimisation.

Authors

Presentation materials

There are no materials yet.