Conveners
LGAD: LGAD
- Salvador Hidalgo Villena (Instituto de Microelectronica de Barcelona (IMB-CNM-CSIC))
The results presented in this contribution are the results of the joint research of the Extreme Light Infrastructure (ELI) – Beamline The first measurements were devoted to understanding the potential of ELI ultrafast spectroscopy for LGAD studies (timing with SPA/TPA) and building up an infrastructure for future LGAD tests. As it will be shown, the preliminary results opened new...
A set of LGADs from HPK was irradiated with different neutron fluxes to the equivalent fluence of $4\cdot10^{14}$ cm$^{-2}$ . The fluxes covered range from $10^{10}$ cm$^{-2}$ s$^{-1}$ to close to $10^{13}$ cm$-2$ s$^{-1}$. The gain layer and bulk depletion voltage as well as charge collection and timing performance were measured after 80 min at 60$^\circ$C annealing point. No dependence of...
Several thin Low Gain Avalanche Detectors from Hamamatsu Photonics were irradiated with neutrons to different equivalent fluences up to $\Phi_{eq}=3\cdot10^{15}$ cm$^{-2}$. After the irradiation they were
annealed at 60$^\circ$C in steps to times $>20000$ minutes. Their properties, mainly full depletion voltage, gain layer depletion voltage, generation and leakage current, as well as their...
This contribution describes the first measurements of a resistive AC-coupled Low Gain Avalanche Diode (AC-LGAD) strip detector using $120$ GeV protons. AC-LGADs combine the precise time resolution of standard LGAD silicon sensors with precise spatial resolution, and make excellent candidates for future 4-dimensional tracking detectors. The sensor studied in this result has a strip pitch of...
In this contribution we present the latest results on spatial and timing resolution of Resistive AC-Coupled Silicon Detectors (RSD), produced by FBK in 2019. RSD are a new type of silicon detectors specifically designed for high precision 4D tracking. They are based on the LGAD technology, benefiting from its excellent timing performances, and can achieve a spatial resolution a factor 10...
RSDs (Resistive AC-Coupled Silicon Detectors) are n-in-p silicon sensors based on LGAD (Low-Gain Avalanche Diode) technology, featuring a continuous gain layer over the whole sensor area. The innovative feature of these sensors is that the signal induced by an ionizing particle spreads among several pixels, allowing position reconstruction techniques that combine the information of many...
Using electrical characterization, acceptor removal coefficients are estimated and compared for Boron, Gallium and Boron with Carbon diffused gain layer LGADs. Effective implant is computed as a function of fluence for up to 6e15 neutron and proton irradiated sensors in different processes. Results are compared to gain reduction calculations aand relent coefficients are derived. The two...
Low Gain Avalanche Detectors (LGADs) are silicon detectors with modest internal gain (up to ~50) that allows the sensor to be very thin (20-50 um). LGADs are characterized by an extremely good time resolution (down to 17ps), a fast rise time (~500ps) and a very high repetition rate (~1ns full charge collection). In a broad array of fields, including particle physics (4-D tracking) and photon...
The performance of Ultra-Fast Silicon Detectors (UFSD) is compromised by hadronic irradiation which removes the acceptors in the thin layer below the junction responsible for the gain. This effect is measured in several different UFSD after irradiation with protons with energy of 70 MeV (CYRIC), 800 MeV (LANL) and 24 GeV (CERN) and compared to the same sensors irradiated with neutrons at IJS....
LGAD Discussion