Speaker
Description
An improvement of the boundary conditions scheme of the 3D nonlinear MHD numerical code SpeCyl is presented. Boundary conditions have been shown to play a key role in the helical self-organization both in Reversed Field Pinch and tokamak plasmas. Two different sets of boundary conditions have been extensively tested against ubiquitous relaxation phenomena induced by plasma current in toroidal devices: ideal kinks and tearing modes. The role of wall position and resistivity on linear perturbations profiles and their exponential growth rates was tested, motivating the need for a reformulation of fluid boundary conditions as well. Preliminary results of such new boundary conditions are also presented, along with a summary of the relevant theoretical framework underlying linear MHD instabilities.