Conveners
Analysis - Calorimetry: Analysis IV
- Maria Robles Manzano (Johannes Gutenberg Universitaet Mainz (DE))
- Tamar Zakareishvili (Ivane Javakhishvili Tbilisi State University (GE))
The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to L ≃ 7.5×10^34 cm−2 s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction and trigger performance for electrons, photons as well as jets and...
Contribution will be presented in two parts:
I.
In 2027 CERN is expected to start the High-Luminosity LHC (HL-LHC) phase. HL-LHC will integrate 10 times the current luminosity, leading to a high pile-up rate and unprecendent radiation levels. In order to cope with such a harsh environment and maintain the current physics performance, a major upgrade of the LHC detectors is required. As part...
For the HL-LHC phase, the calorimeter endcap of the CMS detector will be upgraded with a High Granularity Calorimeter (HGCAL), a sampling calorimeter which will use silicon sensors as well as scintillator tiles read out by silicon photomultipliers (SiPMs) as active material (SiPM-on-tile). The complete HGCAL will be operated at -30 degC. The SiPMs will be used in areas where the expected...
The Analogue Hadron Calorimeter (AHCAL) developed by the CALICE collaboration is a scalable engineering prototype for a detector at future electron-positron energy frontier colliders. It is a sampling calorimeter of steel absorber plates and 3*3 cm$^2$ plastic scintillator tiles individually read out by silicon photomultipliers (SiPMs) as active material. The front-end ASICS (SPIROC2E) are...