Speaker
A. Boehnlein
(FERMI NATIONAL ACCELERATOR LABORATORY)
Description
The D0 experiment relies on large scale computing systems to achieve her
physics goals. As the experiment lifetime spans, multiple generations of
computing hardware, it is fundemental to make projective models in to use
available resources to meet the anticipated needs. In addition, computing
resources can be supplied as in-kind contributions by collaborating
institutions and countries, however, such resources typically require
scheduling, thus adding another dimension for planning. In addition, to
avoid over-subscription of the resources, the experiment has to be educated
on the limitations and trade-offs for various computing activities to enable
the management to prioritze. We present the metrics and mechanisms used for
planning and discuss the uncertainties and unknowns, as well as some of the
mechanisms for communicating the resource load to the stakeholders.
In order to correctly account for in-kind contributions of remote computing,
D0 uses the concept of a Virtual Center, in which all of the costs are
estimated as if the computing were located at solely at FNAL. In contrast
to other such models in common use, D0 accounts for contributions based on
computer usage rather than strictly on money spend on hardware. This gives
incentive to acheive the maximum efficiency of the systems as well as
encouraging active participation in the computing model by collaborating
instititions. This method of operation leverages a common tool and
infrastructure base for all production-type activites.
Primary authors
A. Boehnlein
(FERMI NATIONAL ACCELERATOR LABORATORY)
D0 Computing Planning Board for the
(D0 Collaboration)