Speaker
M.G. Pia
(INFN GENOVA)
Description
Various experimental configurations - such as, for instance, some
gaseous detectors, require a high precision simulation of
electromagnetic physics processes, accounting not only for the
primary interactions of particles with matter, but also capable of
describing the secondary effects deriving from the de-excitation of
atoms, where primary collisions may have created vacancies.
The Geant4 Simulation Toolkit encompasses a set of models to handle
the atomic relaxation induced by the photoelectric effect, Compton
scattering and ionization, with the production of X-ray fluorescence
and of Auger electrons.
We describe the physics models implemented in Geant4 to handle the
atomic relaxation, the object-oriented design of the software and
the validation of the models with respect to test beam data.
In particular, we present a novel development of an original model
for particle induced X-ray emission, to be released for the first
time in the summer of 2004.
We illustrate applications of Geant4 atomic relaxation models for
physics reach studies in a real-life experimental context
Primary authors
A. Mantero
(INFN Genova)
M.G. Pia
(INFN GENOVA)
S. Guatelli
(INFN Genova, Italy)
S. Saliceti
(INFN Genova)