Speaker
Description
We study the phase structure of effective models of finite-density QCD using analytic and lattice simulation techniques developed for the study of non-Hermitian and $\mathcal{PT}$-symmetric QFTs. Finite-density QCD is symmetric under the combined operation of the charge and complex conjugation operators $\mathcal{CK}$, which falls into the class of so-called generalized $\mathcal{PT}$ symmetries. We show that $\mathcal{PT}$-symmetric quantum field theories can support patterned ground-state field configurations in the vicinity of a critical endpoint. We apply our methods to a lattice heavy quark model at nonzero chemical potential that displays patterning behavior for a range of parameters. We derive a simple approximate criterion for the formation of these patterns, which can be used with lattice results.