Speaker
Description
Effective 3d Polyakov loop theories derived from QCD by strong coupling and hopping expansions are valid for heavy quarks and can also be applied to finite chemical potential, due to their considerably milder sign problem. We apply the Monte-Carlo method to the $N_f=1,2$ effective theories up to $\mathcal{O}(\kappa^4)$ in the hopping parameter at zero $\mu$ to determine the critical quark mass, at which the first-order deconfinement phase transition terminates. The critical end point obtained from the effective theory to order $\mathcal{O}(\kappa^2)$ agrees well with 4d QCD simulations with a hopping expanded determinant by the WHOT-QCD collaboration. We also compare with full QCD simulations and thus obtain a measure for the validity of both the strong coupling and the hopping expansion in this regime.