12–16 Sept 2022
University of Edinburgh
Europe/London timezone
RICH2022 in Edinburgh is dedicated to the memory of Jacques Séguinot (1932-2020)

Performance of MCP-PMT and LAPPD in Magnetic Field for RICH Detectors

Not scheduled
2m
University of Edinburgh

University of Edinburgh

poster Photon detection techniques for Cherenkov imaging counters Poster Session and Welcome Drink

Speaker

J. Xie (Argonne National Laboratory (US))

Description

Various ring imaging Cherenkov sub-systems are being proposed in EIC detector for hadron identification with momenta up to 50 GeV/c. It is critical to have a reliable highly pixelated readout sensor working in the high magnetic field environment. Optimization of the photosensor design for high magnetic field tolerance, precision timing resolution, and pixelated readout was performed at Argonne National Laboratory with 6 × 6 cm$^2$ microchannel plate photomultipliers (MCP-PMT). Large area picosecond photodetector (LAPPD) with 20 × 20 cm$^2$ size was commercialized and the geometry was redesigned to reach the requirement of EIC Cherenkov detectors.
An Argonne MCP-PMT and two LAPPDs were recently tested using the Argonne g-2 magnet. Measurements of these devices’ performance in the magnetic field will be discussed. The ANL MCP-PMT shows a performance of over 1.5 Tesla with 10 μm microchannels and optimized design. The LAPPD with 20 μm microchannels also show good performance up to 0.9 Tesla. Although gain was reduced when the magnetic field strength was increased to ~1 T or more, or tipped away from normal to the window, the gain could be recovered simply by increasing the MCP voltage. Data of LAPPD with 10 μm microchannels are still under analysis. Performance comparison of LAPPDs with 10 and 20 μm microchannels will be discussed in the talk.

Author

J. Xie (Argonne National Laboratory (US))

Co-authors

M. Popecki (Incom, Inc.) Z. Meziani M. Minot (Incom Inc.)

Presentation materials

There are no materials yet.