Speaker
Description
We perform a renormalization group (RG) analysis of cold nuclear matter effect on hadron production in semi-inclusive DIS. We focus on the asymptotic limit where the ratio $t = E/(\mu_D^2 L)\rightarrow \infty$, with $E$, $L$, $\mu_D$ being the energy of the jet, the nuclear size, and the inverse interaction range in cold nuclear matter, while the opacity of the medium remains at order unity. We demonstrate that one can resum the leading $\ln t$ enhanced medium effects by a set of coupled differential RG evolution equations, which accounts for strongly formation-time ordered emissions from the endpoint regions of the medium-induced parton splitting functions. Using this new analytic framework, we obtain a good description of the medium-modified pion production in e-A collisions as measured by the HERMES experiment and present predictions for kinematics relevant for the future EIC. Finally, we discuss its connection to the widely used modified DGLAP evolution approach and implications for the development of the Monte-Carlo event generator for e-A collisions.
Submitted on behalf of a Collaboration? | No |
---|