Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

10–13 Oct 2023
Toulouse
Europe/Zurich timezone

High Pileup Particle Tracking with Object Condensation

10 Oct 2023, 09:20
25m
Auditorium (Le Village)

Auditorium

Le Village

Plenary Plenary

Speakers

Gage DeZoort (Princeton University (US)) Kilian Lieret (Princeton University)

Description

Recent work has demonstrated that graph neural networks (GNNs) can match the performance of traditional algorithms for charged particle tracking while improving scalability to meet the computing challenges posed by the HL-LHC. Most GNN tracking algorithms are based on edge classification and identify tracks as connected components from an initial graph containing spurious connections. In this talk, we consider an alternative based on object condensation (OC), a multi-objective learning framework designed to cluster points (hits) belonging to an arbitrary number of objects (tracks) and regress the properties of each object. Building on our previous results, we present a streamlined model and show progress toward a one-shot OC tracking algorithm in a high-pileup environment.

Primary authors

Gage DeZoort (Princeton University (US)) Kilian Lieret (Princeton University)

Presentation materials