IML Machine Learning Working Group: unfolding

Europe/Zurich
Virtual

Virtual

Description

Topic: unfolding

Zoom Meeting ID
96543252431
Host
Simon Akar
Alternative hosts
Riccardo Torre, Fabio Catalano
Passcode
09010263
Useful links
Join via phone
Zoom URL
    • 1
      News
      Speakers: Anja Butter (Centre National de la Recherche Scientifique (FR)), Fabio Catalano (CERN), Julian Garcia Pardinas (CERN), Lorenzo Moneta (CERN), Michael Kagan (SLAC National Accelerator Laboratory (US)), Dr Pietro Vischia (Universidad de Oviedo and Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA)), Simon Akar (University of Cincinnati (US)), Stefano Carrazza (CERN)
    • 2
      Unfolding and machine learning: introduction
      Speaker: Bogdan Malaescu (LPNHE-Paris CNRS/IN2P3 (FR))
    • 15:35
      Question time
    • 3
      Biases and pitfalls in unfolding
      Speaker: Igor Volobouev (Texas Tech University (US))
    • 16:15
      Discussion
    • 4
      ν2-Flows: Fast and improved neutrino reconstruction in multi-neutrino final states with conditional normalizing flows

      https://arxiv.org/abs/2307.02405
      Available time may be extended depending on the number of additional contributions.

      Speaker: Mr Matthew Leigh (University of Geneva)
    • 16:40
      Discussion
    • 5
      ML Unfolding based on conditional Invertible Neural Networks using Iterative Training

      https://arxiv.org/abs/2212.08674

      Speaker: Mathias Josef Backes (Heidelberg University (DE))
    • 17:00
      Discussion