6–12 Apr 2025
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany
Europe/Berlin timezone

Locating the QCD critical point from first principles through contours of constant entropy density

Not scheduled
20m
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Oral QCD phase diagram & critical point

Speaker

Hitansh Shah

Description

We propose a new method to investigate the existence and location of the conjectured high-temperature critical point of strongly interacting matter via contours of constant entropy density. By approximating these lines as a power series in the baryon chemical potential $\mu_B$, one can extrapolate them from first-principle results at zero net-baryon density, and use them to locate the QCD critical point, including the associated first-order and spinodal lines. As a proof of principle, we employ currently available continuum-extrapolated first-principle results from the Wuppertal--Budapest collaboration to find a critical point at a temperature and a baryon chemical potential of $T_c = 114.3 \pm 6.9$ MeV and $\mu_{B,c} = 602.1 \pm 62.1$ MeV, respectively, at expansion order $\mathcal{O}(\mu_B^2)$ [1]. We advocate for a more precise determination of the required expansion coefficients via lattice QCD simulations as a means of pinpointing the location of the critical endpoint in the phase diagram of strongly interacting matter.

[1] H. Shah et. al., arXiv:2410.16206

Category Theory

Primary authors

Claudia Ratti Hitansh Shah Prof. Jorge Jose Leite Noronha (University of Illinois at Urbana-Champaign) Mauricio Hippert Teixeira (University of Illinois at Urbana-Champaign) Dr Volodymyr Vovchenko (University of Houston)

Presentation materials

There are no materials yet.