6–12 Apr 2025
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany
Europe/Berlin timezone

No-quenching baseline for energy loss signals in oxygen-oxygen collisions

Not scheduled
20m
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Poster Initial state of hadronic and electron-ion collisions & nuclear structure Poster session 1

Speaker

Jannis Gebhard

Description

In this work, we perform computations of inclusive jet, and semi-inclusive jet-hadron cross sections for minimum bias oxygen-oxygen collisions at RHIC and LHC collision energies. We compute the no-quenching baseline for the jet nuclear modification factor $R_\mathrm{AA}$ and jet-, and hadron-triggered semi-inclusive nuclear modification factors $I_\mathrm{AA}$. We do this with state-of-the-art nuclear parton distribution functions (nPDFs), next-to-leading-order matrix elements, parton shower, and hadronization. We observe deviations from unity due to cold-nuclear matter effects, even without quenching. We demonstrate that the parton distribution uncertainties constitute a significant obstacle in detecting energy loss in small collision systems. Hadron-triggered observables are particularly sensitive to uncertainties due to correlations between the trigger and analyzed particles. For jet-triggered $I_\mathrm{AA}$, there exists a kinematic window in which nPDF, scale, shower, and hadronization uncertainties cancel down to percent level, overcoming a major limiting factor for energy loss discovery in small systems.

Ref. Gebhard, Mazeliauskas, Takacs [arXiv:2410.22405]

Category Theory

Authors

Adam Takacs (Heidelberg University) Dr Aleksas Mazeliauskas (Heidelberg University (DE)) Jannis Gebhard

Presentation materials