6–12 Apr 2025
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany
Europe/Berlin timezone

Quantum phase diagram of the two-color one-flavor QCD matrix model at strong coupling

Not scheduled
20m
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany

Poster QCD phase diagram & critical point Poster session 1

Speaker

Mr Prasanjit Aich (Indian Institute of Science, Bangalore)

Description

The matrix model for the two-color QCD coupled to a single quark (matrix-QCD$_{2,1}$) exhibits novel features, such as the Pauli-Gursey symmetry. Using variational methods, we numerically investigate matrix-QCD$_{2,1}$ in the limit of ultra-strong Yang-Mills coupling ($g_{YM} =\infty$). The spectrum of the model has superselection sectors labelled by baryon number $B$ and spin $J$. We study sectors with $B=0,1,2$ and $J=0,1$, which may be organised as mesons, (anti-)diquarks and (anti-)tetraquarks. For each of these sectors, we study the properties of the respective ground states in both chiral and heavy quark limits, and uncover a rich quantum phase transition (QPT) structure. We also investigate the division of the total spin between the glue and the quark and show that glue contribution is significant for several of these sectors. For the $(B,J)=(0,0)$ sector, we find that the dominant glue contribution to the ground state comes from reducible connections. Finally, in the presence of non-trivial baryon chemical potential $\mu$, we construct the phase diagram of the model. For sufficiently large $\mu$, we find that the ground state of the theory may have non-zero spin, indicating a phase reminiscent of the LOFF phase in two-color QCD.

Category Theory

Authors

Dr Nirmalendu Acharyya (Indian Institute of Technology, Bhubaneswar) Mr Prasanjit Aich (Indian Institute of Science, Bangalore) Mr Arkajyoti Bandyopadhyay (Indian Institute of Technology, Bhubaneswar) Prof. Sachindeo Vaidya (Indian Institute of Science, Bangalore)

Presentation materials