6–12 Apr 2025
Goethe University Frankfurt, Campus Westend, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt am Main, Germany
Europe/Berlin timezone

Proton High-order Cumulants Results from the STAR Fixed-Target Program

9 Apr 2025, 11:10
20m
HZ 6 (Goethe University Frankfurt, Campus Westend, Hörsaalzentrum)

HZ 6

Goethe University Frankfurt, Campus Westend, Hörsaalzentrum

Oral QCD phase diagram & critical point Parallel session 35

Speaker

Zachary Sweger (University of California, Davis)

Description

Fluctuations of conserved charges in heavy-ion collisions are expected to be sensitive to a critical point in the phase diagram of QCD matter [1, 2]. Such a critical point is increasingly predicted to be located in the high baryon chemical potential ($\mu_B$) region around $\mu_B$ = 500 - 650 MeV [3–8]. In 2018, the STAR Experiment started collecting data in a fixed-target configuration in order to map the high baryon chemical potential region of the phase diagram ($\mu_B$ = 420 - 720 MeV). Critical fluctuations may be observed by measuring various orders of cumulants, $C_n$, of the distributions of baryon number. The collision-energy dependence of net-proton $C_4$/$C_2$ from STAR’s measurements in Beam Energy Scan I hinted at a possible non-monotonic deviation from the non-critical baseline in Au+Au collisions from $\sqrt{s_{NN}}$ = 7.7 GeV to 19.6 GeV, and the first published result from the fixed-target program, in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 GeV is consistent with the non-critical baseline [9–13]. We report here new results on proton-number high-order cumulants from STAR’s Fixed-Target Program. Implications for the QCD phase diagram and critical-point search will be discussed.

[1] M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
[2] M. A. Stephanov, Journal of Physics G: Nuclear and Particle Physics 38, 124147 (2011).
[3] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D 101, 054032 (2020).
[4] F. Gao and J. M. Pawlowski, Physics Letters B 820, 136584 (2021).
[5] P. J. Gunkel and C. S. Fischer, Phys. Rev. D 104, 054022 (2021).
[6] J. Goswami, D.A. Clarke, P. Dimopoulos, F. Di Renzo, C. Schmidt, S. Singh, and K. Zambello, EPJ Web Conf. 296, 06007 (2024).
[7] A. Sorensen and P. Sorensen, (2024), arXiv:2405.10278 [nucl-th] .
[8] M. Hippert et al., (2023), arXiv:2309.00579 [nucl-th] .
[9] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 107, 024908 (2023).
[10] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. Lett. 128, 202303 (2022).
[11] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. Lett. 127, 262301 (2021).
[12] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021).

Category Experiment
Collaboration (if applicable) STAR

Author

Zachary Sweger (University of California, Davis)

Presentation materials

There are no materials yet.