2–6 Dec 2024
Europe/Zurich timezone

Searching for proton decay with paleo-detectors

4 Dec 2024, 16:00
15m
Urška 3 (Exhibition and Convention center)

Urška 3

Exhibition and Convention center

Dunajska cesta 18, 1000 Ljubljana, Slovenia
Parallel Session Talk Parallel track Cosmology and Astroparticle Physics 2

Speaker

Dr Patrick Stengel (Jožef Stefan Institute)

Description

We present a novel experimental concept to search for proton decay. Using paleo-detectors, ancient minerals acquired from deep underground which can hold traces of charged particles, it may be possible to conduct a search for $p \to \bar{\nu} K^+$ via the track produced at the endpoint of the kaon. Such a search is not possible on Earth due to large atmospheric-neutrino-induced backgrounds. However, the Moon offers a reprieve from this background, since the conventional component of the cosmic-ray-induced neutrino flux at the Moon is significantly suppressed due to the Moon's lack of atmosphere. For a 100 g, $10^9$ year old (100 kton$\cdot$year exposure) sample of olivine extracted from the Moon, we expect about 0.5 kaon endpoints due to neutrino backgrounds, including secondary interactions. If such a lunar paleo-detector sample can be acquired and efficiently analyzed, proton decay sensitivity exceeding $\tau_p\sim10^{34}$ years may be achieved, competitive with Super-Kamiokande's current published limit ($\tau_p>5.9\times 10^{33}$ years at 90% CL) and the projected reach of DUNE and Hyper-Kamiokande in the $p \to \bar{\nu} K^+$ channel. This concept is clearly futuristic, not least since it relies on extracting mineral samples from a few kilometers below the surface of the Moon and then efficiently scanning them for kaon endpoint induced crystal defects with sub-micron-scale resolution. However, the search for proton decay is in urgent need of a paradigm shift, and paleo-detectors could provide a promising alternative to conventional experiments.

Primary author

Dr Patrick Stengel (Jožef Stefan Institute)

Presentation materials