Speaker
Andrea Beraudo
(INFN, sezione di Torino (IT))
Description
Predictions obtained with the up-to-date version of our POWLANG transport code for heavy-flavour production in high-energy nuclear (A-A and now also p-A) collisions will be presented. To the usual Langevin evolution in the plasma we added a new modeling of the hadronization stage including the recombination with thermal partons from the medium at the decoupling hypersurface, to form colour-singlet strings eventually fragmented according to the Lund model implemented in PYTHIA. The additional radial and elliptic flow inherited by the heavy-flavour hadrons from the light quarks will affect the final observables, providing a better agreement with the experimental data for RAA and v2.
We will show how, with our setup, it is also possible to study more differential observables like various kind of azimuthal correlations: D-h, e-h -- for which experimental data start getting available -- but also D-Dbar or e+-e-, not yet experimentally accessible but allowing in principle a more direct information on the decorrelation occurred at the partonic level. If the interaction with the medium tends to partially wash-out the initial Q-Qbar angular correlation, the elliptic flow acquired in the medium and at hadronization will tend to introduce a common correlation of all the heavy-flavour hadrons with the reaction plane, which will also contribute to the experimental signal.
Finally we will display the first results of our ongoing study on heavy-flavour observables in small systems, like the ones produced in p-Pb or d-Au collisions, trying to check whether the presence of a hot medium suggested by observables in the light sector (e.g. double ridge, elliptic flow...) can leave its fingerprints also in heavy-flavour signals.
On behalf of collaboration: | NONE |
---|
Author
Andrea Beraudo
(INFN, sezione di Torino (IT))
Co-authors
Dr
Arturo De Pace
(INFN)
Francesco Prino
(Universita e INFN Torino (IT))
Marco Monteno
(Universita e INFN (IT))
Marzia Nardi
(Unknown)