27 September 2015 to 3 October 2015
Kobe, Fashion Mart, Japan
Japan timezone

Nonlinear hydrodynamic response confronts LHC data

28 Sept 2015, 16:10
20m
KFM Hall "IO"

KFM Hall "IO"

Contributed talk Correlations and Fluctuations Correlations and Fluctuations I

Speaker

Li Yan (CNRS)

Description

Higher-order harmonics of anisotropic flow ($v_n$ with $n\ge 4$) can be measured with the direction of lower-order harmonics, e.g., $v_4$ with respect to the $v_2$ plane. We show that one can scale these measurements by quantities involving lower-order harmonics in such a way that the ratio is independent of initial conditions, and solely involves the medium nonlinear response. The resulting ratios allow to directly confront hydrodynamics with experimental data [1]. We construct four independent such ratios involving $v_4$, $v_5$ and $v_6$ and extract their values from LHC data on Pb+Pb collisions, as a function of centrality. We then calculate these ratios using single-shot hydrodynamics and using the transport model AMPT [2]. Model calculations are in very good agreement with data. We point out that hydrodynamics predicts simple scaling relations between these response coefficients, which can be read off directly from data. A substantial response ratio in the seventh harmonic is found in theoretical calculations (both in AMPT and in hydrodynamics), from which we argue that a nonzero $v_7$ signal should be seen when measured with respect to elliptic and triangular flow. We present predictions for $v_7$ versus centrality in Pb+Pb collisions at the LHC. Finally, we point out that combined measurements of higher-order harmonics with their own plane and with respect to lower-order planes can be quantitatively related to event-plane correlations. As an illustration, we show that CMS data on $v_4$ and $v_6$ are compatible with ATLAS data on event-plane correlations. [1] L. Yan and J. Y. Ollitrault, Phys.Lett. B ${\bf 744}$, 82 (2015) [arXiv:1502.02502 [nucl-th]]. [2] L. Yan, S. Pal and J. Y. Ollitrault, in preparation
On behalf of collaboration: NONE

Primary author

Li Yan (CNRS)

Co-authors

Jean-Yves Ollitrault (CNRS) Subrata Pal (Tata Institute of Fundamental Research, Mumbai, India)

Presentation materials