Speaker
Description
Experimental data from heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) as well as first-principle lattice simulations, have provided rich information about the properties of the QCD plasma phase in the $1\sim 3 T_c$ regime. In particular, extensive jet energy loss measurements have allowed unique opportunity for probing the “internal working” of such plasma and for understanding the nonperturbative dynamics that underlies the confinement transition at $T_c$. Significant progress has been made recently in constructing such a microscopic model — the semi-quark-gluon-monopole plasma (sQGMP) which integrates two essential elements of confinements, i.e. the Polyakov-loop suppression of quarks/gluons and emergent magnetic monopoles. Based on sQGMP, a new comprehensive framework for simulating jet energy loss has been developed, called CUJET3.0, which (1) treats the radiative energy loss in the DGLV formalism; (2) convolutes energy loss with a bulk evolution of heavy ion collisions from the state-of-the-art viscous hydrodynamic simulation (VISHNU hydro) that is data-validated; (3) constrains the thermodynamic contents of the plasma constituents by current lattice QCD data. The CUJET3.0 simulation results have successfully passed the test of seven sets of jet quenching (leading-hadron) observables, including light hadrons' $R_{AA}$ and $v_2$ at AuAu 200GeV and at PbPb 2.76TeV as well as D and B mesons $R_{AA}$ and $v_2$ at PbPb 2.76TeV. In this talk the newest results from CUJET3.0 will be reported, with systematic predictions for the light and heavy flavor $R_AA$ and $v_2$ at the LHC 5TeV PbPb collisions. Furthermore, quantification of potential final-state jet attenuation effects from CUJET3.0 for small colliding systems at RHIC and LHC will also be presented.
[Refs] J.Xu, J.Liao and M.Gyulassy: (1) in preparation; (2) JHEP1602(2016)169; (3)CPL32(2015)092501.
Preferred Track | Jets and High pT Hadrons |
---|---|
Collaboration | Not applicable |