Conveners
Parallel Session 4.4: Open Heavy Flavors (I)
- Elena Bruna (Universita e INFN Torino (IT))
The measurement of heavy flavour production is a powerful tool to study the properties of the high-density QCD medium created in heavy-ion collisions as heavy quarks are sensitive to the transport properties of the medium and may interact with the QCD matter differently from light quarks. In particular, the comparison between the nuclear modification factors ($R_{AA}$) of light- and...
Hadrons carrying heavy flavour (charm or beauty quarks) constitute an exceptional probe to study the properties of the Quark-Gluon Plasma (QGP) created in high-energy heavy-ion collisions. Heavy quarks are produced in initial hard parton-scattering processes of the nucleon-nucleon collisions and on short time scales compared to the QGP formation time. Therefore they experience the entire...
Due to their large masses, heavy quarks are predominantly produced through initial hard scatterings in heavy-ion collisions and, as such, they experience the entire evolution of the hot and dense medium created in such collisions. Therefore, they can provide important insights into the properties of the strongly-coupled Quark Gluon Plasma (sQGP). For instance, the azimuthal anisotropy of...
Quark coalescence has been proposed as a new hadronization mechanism to explain the Number-of-Constituent-Quark scaling for meson/baryon elliptic flow as well as the enhancement in baryon-to-meson ratios in heavy ion collisions in the intermediate $p_{T}$ range (2$<$$p_{T}$$<$6 GeV/c) for both light and strange flavor hadrons. If the coalescence mechanism also plays a significant role for...
Open and hidden charm production in nucleus-nucleus collisions is
considered as a key signature of Quark Gluon Plasma (QGP) formation.
In the search of specific QGP effects, proton-nucleus collisions are used as
the reference as they account for the corresponding Cold Nuclear Matter
(CNM) effects.The LHCb experiment, thanks to its System for Measuring
Overlap with Gas (SMOG) can be operated in...
Hard hadrons, including heavy flavor and high $p_\mathrm{T}$ light flavor hadrons, serve as valuable probes of the quark-gluon plasma (QGP) matter produced in relativistic heavy-ion collisions. We establish a Linear Boltzmann Transport (LBT) coupled to (3+1)-D viscous hydrodynamic model that simultaneously describes the temporal evolution of both heavy and light partons inside QGP on the same...