Speaker
Description
Observations at cosmological and astronomical scales indicate that the majority of matter in our Universe is in the form of non-relativistic and long-lived dark matter. Its observed relic abundance is consistent with the existence of a neutral, massive particle with little or no self-interaction. A dark matter candidate favoured by extensions of the Standard Model is a Weakly Interacting Massive Particle (WIMP) whose interaction with normal matter can be probed directly via elastic scattering off target nuclei, thus motivating searches through direct detection. XENON1T, a dual-phase time projection chamber using a 1-ton liquid xenon fiducial volume, was recently constructed in the Laboratori Nazionali del Gran Sasso. It aims to observe primarily low-energy nuclear recoils of WIMPS with unprecedented sensitivity. This presentation gives a status of the XENON1T experiment and describes the XENON1T detector, an initial characterization of the detector, and the predicted sensitivity based on Monte Carlo simulations.