Weakly Interacting Massive Particles (WIMPs) are one of the best motivated elementary particle candidates for dark matter. WIMPs could be detected via their scattering off matter, in so-called direct detection experiments. During the past decade, the sensitivity of such experiments has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. In this...
XENON1T is a dual-phase time-projection chamber, designed to detect dark matter particle interactions within a 2-ton liquid-xenon target with unprecedented sensitivity. The detector, located at the Laboratori Nazionale del Gran Sasso, has been fully operational since May 2016, including regular calibrations, background studies, and a continuously improving xenon purity. The ongoing acquisition...
DarkSide uses dual-phase Liquid Argon Time Projection Chambers to search for WIMP dark matter. The current experiment, DarkSide-50, has a 50-kg-active-mass TPC surrounded by a borated-liquid-scintillator neutron detector and a water Cherenkov detector. DarkSide-50 has been running continuously since 2013, initially with atmospheric argon and then, starting in mid-2015, with argon from...
It has been suggested by several astronomical observations that dark matter contributes 27 % to the overall energy density of our universe but no particle candidates have been observed yet. The CRESST experiment aims to directly detect dark matter particle elastically scattering off nuclei. The CRESST-II detector modules are based on CaWO4 crystals which are operated at mK temperatures. The...
Two phase xenon time projection chambers have a number of attractive characteristics for their use in rare event searches. This is the case for the Large Underground Xenon (LUX) experiment, resulting in interesting new results. TPCs have been traditionally used in dark matter searches for nuclear recoils, and LUX reported the most sensitive limits to date for spin-independent and...
The LUX-Zeplin (LZ) experiment is the most advanced next-generation direct detection experiment under construction to search for dark matter in the Universe. It contains a dual-phase liquid xenon time projection chamber with a total active mass of 7 tons. LZ is implementing various low background techniques to significantly reduce radioactive background and reach an unprecedented level of...
The Minimal Dark Matter (DM) framework classifies viable DM candidates that are obtained by simply augmenting the Standard Model of particle interactions with a new multiplet, without adding new ad hoc symmetries to make the DM stable. The model has no free parameters and is therefore extremely predictive; moreover, recent studies singled out a Majorana SU(2) quintuplet as the only viable...
The complementarity of direct, indirect and collider searches for dark matter has improved our understanding concerning the properties of the dark matter particle. We will review the basic concepts that these methods rely upon and highlight what are the most important information they provide when it comes down to interpret the results in terms of Weakly Interacting Massive Particles (WIMPs)....
The axion arises as a pseudo Nambu-Goldstone boson from the spontaneous breaking of a hypothetical global Peccei-Quinn symmetry introduced to provide a solution to the strong CP problem of quantum chromodynamics. Due to the weakness of the coupling with ordinary matters, the axion is regarded as a viable candidate of dark matter of the universe. However, the estimation of the axion dark matter...
The Higgs-portal model with a singlet scalar Dark Matter particle is one of the simplest extensions to the Standard Model that can reproduce the relic density. But unfortunately this model is strongly constrained by direct and indirect DM detection, as well as by collider physics. Most of the parameter space is already ruled-out and the rest will be explored in the next future. We show that a...
We study the naturalness properties of the B โ L Supersymmetric Standard Model (BLSSM) and compare them to those of the Minimal Supersymmetric Standard Model (MSSM) at both low (i.e., Large Hadron Collider) energies and high (i.e., unification) scales. By adopting standard measures of naturalness, we assess that, in presence of full unification of the additional gauge couplings and...
A general overview of the landscape for WIMP and non-WIMP DM at colliders is presented, highlighting new results but also showcasing the directions of the search program of the two general purpose experiments ATLAS and CMS towards the full Run-2 dataset.
Searches in CMS for dark matter in final states with invisible particles recoiling against hadronic final states are presented. Various topologies and kinematic variables are explored, as well as jet substructure as a means of tagging heavy bosons. The focus of the talk is the recent results obtained using data collected in 2016 run of the LHC.
The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark...
The presence of dark matter is known from cosmological observations yet it has so far escaped direct detection. As a consequence there has been renewed interet in hidden-sector models that predict new particles that are singlets with respect to the Standard Model (SM) gauge bosons and thus interact very weakly with the Standard Model particles.
The LHCb experiment allows to search for these...
The dark photon, $Aโฒ$, the dark Higgs boson, $hโฒ$, and the dark baryon, $B'$, are hypothetical constituents featured in a number of recently proposed Dark Sector Models. Dark Sector particles can be produced in the dark Higgs-strahlung and radiative processes, and in neutral $D$-meson decays channels. We will present results for the search of dark sector particles with prompt and displaced...
The next-generation B-factory experiment Belle II at the upgraded KEKB accelerator, SuperKEKB, will start physics data taking in 2018. It is an asymmetric e+e- collider that will operate with 40x the instantaneous luminosity of KEKB/Belle and aims to collect 50 times more data in total.
Belle II offers the possibility to search for a large variety of dark sector particles in the GeV mass...
To date, only two modes of production at hadron colliders of dark matter through new scalar or pseudoscalar mediators have been considered in the existing literature: pairs of dark matter particles produced through top quark loops with an associated hadronic jet in the event (monojet), and production of dark matter with pairs of heavy flavoured top or bottom quarks.
We present a third,...
We present a full NLO QCD calculation of neutralino scattering on protons or neutrons in the Minimal Supersymmetric Standard Model. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general...
It is well known that dark matter density measurements, indirect and direct detection experiments, importantly complement the LHC in setting strong constraints on new physics scenarios. Yet, dark matter searches are subject to limitations which need to be considered for realistic analyses. For illustration, we explore the parameter space of the phenomenological MSSM and discuss the interplay...
I will present the latest results for global fits to the Higgs portal scalar singlet extended standard model using complementary probes of dark matter.ย In doing so I will introduce the new global and modular beyond the standard model inference tool (GAMBIT), which we use to achieve these results in aย statistically consistent and modular way.
The indirect searches for dark matter particles are a very hot topic of today's physics and astrophysics. The energy-mass content of the Universe is one of the biggest riddles of modern science. The Standard Model describes the physics of only a small fraction of the Universe. Although only gravitational interaction of the dark matter with normal matter was observed up to now, a lot of effort...
During the last years several Dark Sector Models have been proposed in order to address striking astrophysical observations which fail standard intepretations.
In the minimal case a new vector particle, the so called dark photon (U or A' boson), is introduced, with small coupling with Standard Model particles. Also, the existence of a dark Higgs boson h' is postulated, in analogy with the...
Massive photon-like particles are predicted in many extensions of the Standard Model with a hidden sector where dark matter is secluded. They are vector bosons mediating the interaction between dark matter particles and can be produced in scattering of ordinary particles through a faint mixing to the photon. Most of the present experimental constraints on this โdark photonโ (Aโ) rely on the...
We live in a golden age for astro-particle physics, with a significant number of experiments actively monitoring high-energy Universe. Many of these probes provide excellent tests of particle physics models of dark matter particles. In particular, experiments such as Fermi -LAT, AMS-02, Ice Cube, ... are significantly cutting into the parameter space of one of the most popular candidates, the...
Sitting at the faint end of the galaxy luminosity function, dwarf spheroidal galaxies of the Milky Way are among the most compelling targets for Dark Matter indirect searches, being characterized by large mass-to-light ratios and small baryonic background and foreground. In this talk we review the assumptions at the basis of the estimate of the Dark Matter content in these galaxies as...
The excess of the antiproton flux and the antiproton-to-proton flux ratio beyond the prediction of the collision of ordinary cosmic rays is a unique signal from the Dark Matter model of neutralino annihilation. This excess can not come from pulsars. We present precision measurements by AMS of the antiproton flux and the antiproton-to-proton flux ratio in the absolute rigidity range from 1 to...
We analyze cosmic-ray antiproton observations in the light of dark matter (DM) annihilation in our Galaxy using the recent precise AMS-02 measurements. Taking into account cosmic-ray propagation uncertainties by fitting at the same time DM and propagation parameters we find a significant indication of a DM signal for various annihilation channels in the mass range between 40 and 130 GeV and...
We report on the most recent searches for unknown low-mass states performed with the data collected by the BaBar detector at the PEP-II e+e- collider.
The first search is based on a sample corresponding to 53 fbโ1 of e+eโ collision data collected with a special single-photon trigger. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with...
I will describe the physical mechanisms and the actual bounds that CMB anisotropy studies put on primordial black holes, notably if they constitute a sizable fraction of dark matter. Both mass-independent gravitational effects (linked to mergers) and mass-dependent ones (due to electromagnetic energy injection) will be covered. I will also briefly comment on the complementarity of other...
Direct dark matter searches are promising techniques to identify the nature of dark matter particles. A variety of experiments have been developed over the past decades, aiming to detect Weakly Interactive Massive Particles (WIMPs) via their scattering in a detector medium. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a...
In this presentation the R&D of a gas detector prototype for high precision tracking of low energy nuclear recoils over large gas volumes will be presented.
In our prototype, the scintillation light accompanying the electronic avalanches in a triple GEM structure is detected by a CMOS-based camera through a suitable lens. The CMOS sensors provide a very high granularity along with a very low...
Cosinus is a R&D project aiming for the cryogenic operation of NaI-crystals to search for elastic dark matter scattering. NaI-crystals are scintillating and
the combined measurement of the scintillation light and the phonon signal allows a precise measurement of the deposited energy and a good separation between signal and background events. However, NaI is hygroscopic and requires a special...
DARWIN (DARk matter WImp search with liquid xenoN) will be an experiment
for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber. The first goal of Darwin will be to look for Weakly Interacting Massive Particles (WIMPs) pushing the sensitivity until the background of natural sources of neutrinos will be the dominant background. DARWIN's excellent...
Proposed more than 30 years ago, axions are still the most compelling solution to the strong CP problem of the Standard Model. More recently their physics case has been considerably sharpened, as well as that of similar axion-like particles (ALPs) that generically emerge in diverse high-energy extensions of the Standard Model, notably string theory. Both axion and ALPs constitute very...
Dark matter axions can generate peculiar effects in special types of Josephson junctions, so-called SNS junctions [1]. One can show that the axion field equations in a Josephson environment allow for very small oscillating supercurrents, which manifest themselves as a tiny wiggle in the I-V curve, a so-called Shapiro step, which occurs at a frequency given by the axion mass. The effect is very...