Measurements of single W and Z boson inclusive and differential production cross sections and their ratios with the CMS detector are presented. The results are compared to predictions from different Monte Carlo generators. A comparison of the results to predictions using different pardon distribution functions (PDF) tests the performance of PDFs.
In 2016 the LHCf experiment has fulfilled its original goal of measuring the spectra of the neutral particles produced in the very forward direction at LHC at the highest energy ever available. The main purpose of these measurements is indeed to provide the Cosmic Ray and High Energy Physics communities with a missing unique set of information for the improvement of the hadronic interaction...
The latest results on the measurement of the Higgs boson couplings and properties in the diphoton, ZZ and WW decay channels with the ATLAS detector are presented, using approximately 36 fb-1 of pp collision data collected at 13 TeV.
The study of identified particle production as a function of the proton-proton (pp) collision energy and multiplicity is a key tool for understanding similarities and differences between small and large interacting systems. We report on new measurements of the production of unidentified charged hadrons as well as of pions, kaons, protons, K$^{0}_{\rm S}$, $\Lambda$, $\Xi$, $\Omega$, K$^{*0}$...
Present status of the major problems in neutrino physics is outlined. New approaches to their solutions, recent advances and developments will be reviewed. Landscape of the problems covers complete reconstruction of the neutrino mass and mixing spectrum, tests of nature of neutrino masses, searches for new physics beyond the SnuM, identification of the mechanism of neutrino mass and mixing...
Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent theoretical developments in the study of the J/ψ and ϒ families at the energies of Large Hadron Collider (LHC) are reviewed. In particular, the possible implications related to the production and...
LHCb experiment at CERN has recently reported a set of measurements on lepton flavour universality in b to s transitions showing a departure from the Standard Model predictions. I will review the main ideas recently put forward to make sense out of these intriguing hints. Focusing on the new physics explanation, I will discuss the correlated signals expected in other low- and high- energy...
Weakly Interacting Massive Particles (WIMPs) are one of the best motivated elementary particle candidates for dark matter. WIMPs could be detected via their scattering off matter, in so-called direct detection experiments. During the past decade, the sensitivity of such experiments has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. In this...
The Phase I upgrade of the CMS pixel detector, installed by the CMS collaboration during the recent extended end-of-year technical stop, is built out of four barrel layers (BPIX) and three forward disks in each endcap (FPIX). It comprises a total of 124M pixel channels, in 1,856 modules and it is designed to withstand instantaneous luminosities of up to 2 x 10^34 cm-2 s-1 with increased...
Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or...
The measurements of dilepton and diphoton production in photon-photon fusion with the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are presented. For the first time, exclusive dilepton production at high masses have been observed in the CMS detector while one or two outgoing protons are measured in CT-PPS using around 10~${\rm fb}^{-1}$ of data accumulated in 2016 during high-luminosity...
The studies on the properties of Higgs boson in H->ZZ->4l (l = e, μ) and H->WW->eνμν decay channels based on the data collected with the CMS experiment in Run2 are presented. The reported results include studies of the Higgs boson production modes using H->ZZ and H->WW decay channels, as well as measurements of the Higgs boson mass, signal strength, fiducial differential cross sections for its...
In this talk we present our results on production of heavy quarkonia in $pA$ and $AA$ collisions in the color dipole approach. We analyze dynamics of quarkonium inside nuclear matter, and assess nuclear suppression due to shadowing and absorption, as well as consider novel multinucleon production mechanism. The contribution of this new mechanism explains why the measured nuclear effects remain...
The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target SMOG. The excellent detector capabilities for vertexing, tracking and particle identification allow to measure exclusive particle production for collisions of protons on different nuclei at an energy scale of sqrt(sNN) ~ 100 GeV, providing valuable...
XENON1T is a dual-phase time-projection chamber, designed to detect dark matter particle interactions within a 2-ton liquid-xenon target with unprecedented sensitivity. The detector, located at the Laboratori Nazionale del Gran Sasso, has been fully operational since May 2016, including regular calibrations, background studies, and a continuously improving xenon purity. The ongoing acquisition...
Rare b-hadron decays, which proceed via flavour changing neutral current (FCNC) transitions, provide a powerful test of the Standard Model of particle physics. I will present a short review of recent results on rare FCNC transitions from the LHC experiments, and will discuss some interesting tensions that have started to appear between experimental measurements and the Standard Model...
The forward acceptance of LHCb, 2.0 < y < 5.0, provides a complementary reach to the general purpose detectors on LHC. LHCb measurements of the inelastic cross-section and related results will be presented, as well as a comparison to Run 1 results.
The cross-section for central exclusive production of J/psi and Psi(2S) mesons at 13 TeV is measured using the LHCb detector. Proton dissociative...
The Compact Muon Solenoid (CMS) is a multi-purpose detector constructed in order to study high-energy particle collisions in the Large Hadron Collider (LHC) at CERN. The all-silicon design of the tracking system of the CMS experiment provided excellent resolution for charged tracks and an efficient tagging of jets during Run1 and Run2 of LHC.
As CMS upgraded and installed the pixel detector...
ALICE is the LHC experiment dedicated to the study of high energy heavy-ion collisions, where the formation of a hot and dense strongly-interacting medium, a Quark-Gluon Plasma (QGP), is expected. Considerable theoretical and experimental efforts have been invested in the last 30 years to study the properties of the QGP. One of the signals of QGP formation is the suppression of quarkonia,...
The latest results of the measurement of the Higgs boson decaying into two photons with the full 2016 data will be presented. The analysis is performed using the dataset recorded by the CMS experiment at the LHC from pp collisions at centre-of-mass energies of 13 TeV corresponding to an integrated luminosity of 35.9 1/fb.
T2K is a long-baseline neutrino oscillation experiment taking data since
2010. A neutrino beam is produced at the J-PARC accelerator in Japan and is
sampled at a Near Detector complex 280 m from the
neutrino production point and at the far detector, Super-Kamiokande.
Beams predominantly composed of muon neutrinos or muon anti-neutrinos have been
produced by changing the currents in the...
Measuring the scattering of longitudinally-polarized vector bosons will represent a fundamental test of
Electroweak Symmetry Breaking.
In addition to the challenges provided by low rates and large backgrounds,
there are conceptual issues which remain unresolved for the definition of a suitable signal.
Since vector bosons are unstable and can only be observed through their decay products,
the...
High-energy space missions allow keeping watch over blazars, which are jet emitting astrophysical sources that can flare. They provide deep insights into the engine powered by supermassive black holes. However, having a blazar caught in a very bright flaring state is not easy requiring long surveys. The observation of such flaring events represents a goldmine for theoretical studies.
Such a...
Precision measurements of the Drell-Yan production of W and Z bosons at the LHC provide a benchmark of our understanding of perturbative QCD and electroweak processes and probe the proton structure in a unique way.
The ATLAS collaboration has performed a new precise triple differential cross-section measurement as a function of M(ll), dilepton rapidity and cosθ∗ defined in the Collins-Soper...
The NuMI Off-axis νe Appearance (NOvA) experiment is a two-detector, long-baseline neutrino oscillation experiment which addresses some of the main open questions in the neutrino sector through precision measurements of neutrino and antineutrino oscillations. NOvA uses the upgraded NuMI neutrino beam at the Fermi National Accelerator Laboratory and a highly active, finely segmented 14-kton far...
Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector:
We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. ...
The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect quarkonia production . Therefore, a full assessment requires detailed studies on the effects present in...
Prompt neutrino fluxes are background for searches of astrophysical neutrinos at Very Large Volume Neutrino Telescopes. We present predictions for these fluxes, obtained by state-of-the-art QCD methods, and we discuss their uncertainties, in particular those related to our approximate knowledge of Parton Distribution Functions. We make use of the PROSA fit, the first fit appeared in literature...
Charmonium states, such as the J/$\psi$ and $\psi$(2S) mesons, are excellent probes of the deconfined state of matter, the Quark-Gluon Plasma (QGP). The understanding of charmonia production in PbPb collisions requires the inclusion of many phenomena, such as dissociation in the QGP and statistical recombination, on top of cold nuclear matter effects (modifications of nPDFs, initial-state...
We present an inclusive search for a Higgs boson with high transverse momentum decaying to a bottom-antibottom quark pair in pp collisions using the 2016 data sample corresponding to 35.9fb−1collected by the CMS experiment at LHC. High pT Higgs bosons candidates are reconstructed in a single jet with opening angle corresponding to R = 0.8 (AK8 jet). Jet substructure and dedicated b-tagging...
We present the measurements of forward-backward charge asymmetry $A_{FB} $ in
$p\bar{p}\rightarrow Z/\gamma^{*} \rightarrow \mu^+\mu^- $ events using $9.7 \ $fb$^{-1}$ of $ p\bar p$ data collected at $\sqrt s=1.96\ $TeV by the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the dimuon system to extract the effective weak mixing...
The OPERA experiment reached its main goal by proving the appearance of $\nu_\tau$ in the CNGS $\nu_\mu$ beam. A total sample of 5 candidates fulfilling the analysis defined in the proposal was detected with a S/B ratio of about ten allowing to reject the null hypothesis at 5.1 $\sigma$. The search has been extended to $\nu_\tau$-like interactions failing the kinematical analysis defined in...
We present recent results of diffractive and exclusive measurements with the CMS experiment.
It has been suggested by several astronomical observations that dark matter contributes 27 % to the overall energy density of our universe but no particle candidates have been observed yet. The CRESST experiment aims to directly detect dark matter particle elastically scattering off nuclei. The CRESST-II detector modules are based on CaWO4 crystals which are operated at mK temperatures. The...
The ATLAS trigger has been used very successfully for online event selection during the first part of the second LHC run (Run-2) in 2015/16 at a centre-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger. Events are selected based on physics signatures such as presence of energetic leptons, photons, jets or large...
We present four measurements of forward-backward charge asymmetry $A_{FB} $ in
$p\bar{p}\rightarrow Z/\gamma^{*} \rightarrow e^+ e^-/\mu^+\mu^- + X$ events using $\sim 10\ $fb$^{-1}$ of $ p\bar p$ data collected at $\sqrt s=1.96\ $TeV by the D0 and CDF detectors at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the dilepton system to extract the...
Two phase xenon time projection chambers have a number of attractive characteristics for their use in rare event searches. This is the case for the Large Underground Xenon (LUX) experiment, resulting in interesting new results. TPCs have been traditionally used in dark matter searches for nuclear recoils, and LUX reported the most sensitive limits to date for spin-independent and...
We suggest that the exclusive Higgs + light (or b) jet production at the LHC,
$pp \to h+j(j_b)$, is a rather sensitive probe
of the light-quarks Yukawa couplings and of new physics (NP) in the
Higgs-gluon $hgg$ and quark-gluon $qqg$ interactions.
We study the Higgs $p_T$ distribution in $pp \to h+j(j_b)$, employing non-differential observables
to probe the different types of NP relevant for...
The LHCb experiment has the unique property to study heavy-ion interactions in the forward region (2 < η < 5), in a kinematic region complementary to the general purpose detectors. The detector has excellent capabilities for reconstructing quarkonia down to zero pT. Notably, it can separate the prompt and displaced components. In pPb collisions, both forward and backward rapidities are covered...
The photoproduction of isolated photons has been measured using diffractive events recorded by the ZEUS detector at HERA. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges 5 < $E_T^\gamma$ < 15 GeV and
−0.7 < $\eta^\gamma$ < 0.9, inclusively and also with a jet with transverse-energy and pseudorapidity in the ranges 4 < $E_T^{jet}$ < 35 GeV and −1.5 <...
Charmonium states play an important role as probes of the phase transition between hadronic and deconfined matter. In high-energy nucleus-nucleus collisions, where the formation of a plasma of quarks and gluons is expected, the charmonium production yields are modified by mechanisms as color screening and/or (re)combination of $\rm{c}$ and $\bar{\rm{c}}$ quarks. However, charmonium production...
We report on the status of the precision measurements of electroweak parameters with W and Z bosons with the CMS detector. The effective electroweak mixing angle sin^{2}_{\theta} is extracted by measuring the forward-backward asymmetry in dilepton events near the Z boson mass region. Experimental and theoretical challenges needed for a high-precision W boson mass measurement are reported using...
KLOE-2 at the e$^+$e$^-$ DA$\Phi$NE collider, is the main experiment of the INFN Laboratori Nazionali di Frascati (LNF) and is the first high-energy experiment using the GEM technology with a cylindrical geometry, a novel idea developed at LNF exploiting the kapton properties. The experiment is the continuation of KLOE, upgraded with state-of-the-art technology to improve its discovery...
The Reactor Experiment for Neutrino Oscillation (RENO) started data-taking from August, 2011 and has sucdessfully measured the smallest neutrino mixing angle θ_13 in 2012 using 220 days of data by observing the disappearance of reactor antineutrinos. Antineutrinos from the six reactors at Hanbit Nuclear Power Plant in Korea are detected and compared by the two identical detectors located in...
Quarkonia are mesons formed of either a charm and anti-charm quark pair ($\rm{J}/\psi$, $\psi(2S)$), or a beauty and anti-beauty quark pair ($\Upsilon$(1S), (2S) and (3S)). In high-energy hadronic collisions such as those delivered by the LHC between 2010 and 2016, quarkonium production results from the hard scattering of two gluons in a process which occurs very early in the collision...
Rare decays are flavour changing neutral current processes that allow sensitive searches for phenomena beyond the Standard Model (SM).
In the SM, rare decays are loop-suppressed and new particles in SM extensions can give significant contributions.
The very rare decay Bs->mumu is in addition helicity suppressed and constitutes a powerful probe for new (pseudo) scalar particles.
Of particular...
The latest results from CMS on the study of SM Higgs decaying to tau pair and search for SM Higgs decaying to bottom quarks will be discussed. These results are based on the analysis of p-p collisions at 13 TeV, collected from CMS in the year 2016.
The LUX-Zeplin (LZ) experiment is the most advanced next-generation direct detection experiment under construction to search for dark matter in the Universe. It contains a dual-phase liquid xenon time projection chamber with a total active mass of 7 tons. LZ is implementing various low background techniques to significantly reduce radioactive background and reach an unprecedented level of...
The DAMPE (DArk Matter Particle Explorer) satellite was launched on
December 17, 2015 and it is taking data from more than 18 months.
It is designed to probe the highest energy cosmic-ray accelerators and to study
the nature of dark matter thanks to its excellent tracking and
calorimetric performances in the measurements of electrons, gamma rays, protons and nuclei.
A report on the...
Nuclear reactor neutrinos were used on the first neutrino detection back in 1956. Since then our knowledge on neutrino physics haven't stopped broadening, and reactor neutrinos are still an important source of investigation. The Double Chooz (DC) is an experiment on neutrino oscillation based at Chooz nuclear power plant in France. Back in 2011 the DC collaboration reported an indication of...
The latest results on the measurement of the cross sections and couplings of the Higgs boson in the fermionic decay channels to bb, tautau and mumu with the ATLAS detector are presented, using approximately 36 fb-1 of pp collision data collected at 13 TeV.
Open heavy flavour hadron production is studied in pPb collisions at sqrt{s_{NN}}= 5 and 8 TeV with the LHCb experiment. The detector has excellent capabilities for particle identification and for the reconstruction of charm and beauty hadrons down to zero pT. Both forward and backward rapidities are covered thanks to the possibility of beam reversal. Results include measurements of the...
The SoLid short baseline reactor neutrino experiment consists of a highly segmented plastic scintillator detector with a fiducial mass of 2 ton. Its main purpose is to prove or rule out the existence of sterile neutrinos corresponding to $\delta_{M^2}$ values of order 1eV$^2$. The covered baseline ranges between 6 and 9 meters and is in-line with the compact core of the 60MW BR2 reactor of the...
Rare b->s(gamma,ll) decays are flavour changing neutral current processes that are forbidden at the lowest perturbative order in the Standard Model (SM).
As a consequence, new particles in SM extensions can significantly affect the branching fractions of these decays and give rise to new sources of CP-violation.
The LHCb experiment is ideally suited for the analysis of rare decays due to the...
The results obtained from the different decay channels are combined to study the properties of the Higgs boson production and decay, and test the SM theoretical precision with increased accuracy, using about 36 fb-1 of p-p collisions data collected at 13 TeV.
Produced in a hard scattering an energetic parton will lead to a parton shower which will be fragmenting into a hadronic spray of particles called jet. The mass of the jet is sensitive to the initial virtuality of the parton at the origin of the shower. The jet fragmentation functions and their moments, describe the momentum distribution of hadrons inside a reconstructed jet. Their measurement...
Lepton Flavor (Universality) Violation in B Meson Decays
Even though the LHC searches so far did not unveil the new physics particles, the B-physics experiments at LHCb, BaBar and Belle hint towards deviations from Lepton Flavor Universality in both the tree-level and loop-induced B meson semileptonic decays. I will briefly review the models that can address these puzzles, propose one new...
In ultra-relativistic heavy-ion collisions, creation of a novel state of matter—the quark-gluon plasma (QGP)—is expected. Studying the properties of this medium of deconfined quarks and gluons has been a focus of high energy nuclear physics and poses a significant experimental challenge. Among various probes, quarkonium production is a crucial one since their production is expected to be...
We review the status of the global electroweak fit in the Standard Model (SM), including the latest theoretical and experimental updates. We discuss in detail the consistency of the SM with current experimental data, and derive constraints on general new physics scenarios. These are compared and combined with the bounds obtained using Higgs boson observables measured at the LHC. Finally, we...
The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting ~100 events with a 10% background to make a stringent test of the Standard Model in two years of data taking.
The Calorimeter Level 0 Trigger is used to suppress one of the main backgrounds, the K+ -> pi+ pi0 decay, and to select events with a pi+ in the final...
The last solar cycle has presented a peculiarly long quiet phase with consequent minimum modulation conditions for cosmic rays. The proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. These studies allow to obtain a more complete description...
The complementarity of direct, indirect and collider searches for dark matter has improved our understanding concerning the properties of the dark matter particle. We will review the basic concepts that these methods rely upon and highlight what are the most important information they provide when it comes down to interpret the results in terms of Weakly Interacting Massive Particles (WIMPs)....
Measurements of charmed-hadron production in pp collisions are important to test predictions from perturbative QCD and provide an essential baseline for the studies in A--A collisions. Measurements in p--A collisions also allow studies of possible modifications of the charmed-hadron yields due to cold nuclear matter effects. The study of charm production as a function of the multiplicity of...
Particles carrying heavy flavor are important probes of the properties of the Quark-Gluon Plasma (QGP) since they are produced in hard scattering during the earliest stages of nuclear collisions. In recent years, the PHENIX detector has collected data on p+p, p+Al, p+Au, He$^3$+Au, Cu+Au and Au+Au collisions at $\sqrt{s_{NN}}$=200GeV with the addition of silicon vertex detectors (VTX and...
Nuclear astrophysics is an extremely rich field, correlated with many other research fields like observational neutrino physics, stellar modeling and cosmology.
As example, the precise knowledge of reactions producing neutrinos is mandatory to use neutrinos as probes of the stellar interior but at stellar energies the cross sections are usually extremely low, down to the femto-barn level.
The...
Phenomena beyond the standard model (SM) can manifest themself indirectly, by affecting the production and decay of SM particles. The decay B0->K* mu mu is a flavor-changing neutral current (FCNC) process particularly sensitive, since it is heavily suppressed in the SM. Recent results from LHCb collaboration show a tension with respect SM prediction of more than 3 sigmas. We will present...
Recent results on CMS searches for exotic decays of the Higgs boson H(125) will be presented in this talk including searches for invisible and quasi invisible decays, lepton flavour violating ($e\mu$, $e\tau$, $\mu\tau$) decays, and decays to light scalars. The current status of searches for rare decays of standard model Higgs boson will also be summarized.
We present the status of the global fit to electroweak precision data. The fit includes the latest available hadron collider measurements of the top-quark and the W-boson masses, as well as newest higher-order theoretical calculations. A large set of numerical and graphical results as well as Standard Model compatibility tests are presented. The global electroweak fit is also used to constrain...
Precision study of cosmic nuclei provides detail knowledge on the origin and propagation of cosmic rays. In the past, results of different experiments often had large uncertainty and are different of each other. AMS was designed to measure and identify cosmic ray nuclei with seven independent detectors, thus it is able to provide precision studies of nuclei simultaneously to multi-TeV...
The axion arises as a pseudo Nambu-Goldstone boson from the spontaneous breaking of a hypothetical global Peccei-Quinn symmetry introduced to provide a solution to the strong CP problem of quantum chromodynamics. Due to the weakness of the coupling with ordinary matters, the axion is regarded as a viable candidate of dark matter of the universe. However, the estimation of the axion dark matter...
The discovery of the Higgs physics together with the excellent performance of the LHC allow to make precision tests of Brout-Englert-Higgs Physics.
At this level, it becomes important to fully understand the theory behind this physics. As was already pointed out more than 35 years ago, there is a paradox in the standard model: The elementary fields should not be the particles we observe, as...
The LHCb experiment, thanks to its System for Measuring Overlap with Gas (SMOG), has the unique capability to operate in a fixed target mode with the LHC beams.
Reactions of incident LHC proton beams on noble gas targets have been recorded by the LHCb experiment at a center-of-mass energy of 110 GeV and within the center-of-mass rapidity range -2.3 < y* < 0.2. Results on anti-proton production...
We present precise measurements of decay properties of hadrons containing a b quark performed on the data collected by the CMS experiment at LHC. The lifetime is among the fundamental properties of particles and in heavy hadrons it is one of the important observables that allows to test the theoretical tools describing their physics. Some of the reported measurements are at the precision level...
Following successful demonstrations of the potential of highly granular calorimeters by the CALICE collaboration, the emphasis of current R&D has shifted to the next generation of prototypes. Optimized for Particle Flow Algorithms (PFA) which will achieve unprecedented jet energy resolution at future colliders, this new generation of CALICE calorimeters also addresses full system requirements...
The knowledge of the energy dependence of the $^{3}$He-to-$^{4}$He flux ratio ($^{3}$He/$^{4}$He) is one of the most important sources for studying and testing cosmic ray propagation models.
Similar to the B/C measurement, where B is assumed to originate from interactions of primary Carbon and Oxygen in Cosmic Rays, in the $^{3}$He/$^{4}$He measurement $^{3}$He is assumed to be produced by...
Heavy flavour production measurements in proton-proton collisions are important tests of QCD.
We report on updated production cross-section measurement of quarkonia, open-charm, and open-beauty states. Other aspects related to the quarkonium production mechanisms, such as the associative production of quarkonium and jets, will be discussed.
Low mass dielectron measurements in ultra-relativistic heavy-ion collisions
bring an important information on the properties of the hot and dense QCD medium and whole space-time evolution of the medium created in heavy-ion collisions.
Dielectrons in the mass range below 1 GeV/$c^2$, are from ordinary Dalitz and resonance decays of pseudoscalar and vector mesons. Dielectron invariant mass from...
The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into "telescopes", each consisting of three planes. It was installed during LS1 at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the...
In the recent past, several hints of inconsistencies between experimental results and theory predictions in the framework of the Standard Model (SM) have been obtained from measurement of $B$-meson decays, though no beyond-SM (BSM) effects have been observed yet.
We report here about a few recent searches for BSM effects in B-meson decays performed with the full BaBar data sample, collected...
We discuss the constraints on the Standard Model Effective Field Theory inferred from global fits to electroweak data. In particular, we focus on two unconstrained combinations of Wilson coefficients that are present when the analysis is restricted to measurements of $\bar\psi\psi\rightarrow \bar\psi\psi$ scatterings. We show how these unconstrained directions arise due to a...
Some theories predict Lepton Flavour Violating decays of the Higgs boson, while other predict enhanced decay rates in rare modes like Z-photon, J/Psi-photon and Phi-photon or into invisible particles. Such decays are searched for using about 36 fb-1 of p-p collisions at 13 TeV.
Precision measurements of neutrino oscillation probabilities require an improved understanding of neutrino-nucleus interactions. MINERvA is a neutrino scattering experiment at Fermilab that utilizes the intense neutrino beam from the NuMI beam-line and a finely segmented scintillator based tracking detector to measure neutrino cross sections on various nuclear targets. MINERvA has published...
The Pierre Auger Observatory, located in Argentina, has been detecting ultra-high energy cosmic rays for more than ten years. The combination of a large surface detector array and fluorescence telescopes provides a substantial improvement in energy calibration and extensive air shower measurements, resulting in data of unprecedented quality in the energy range from 0.1 EeV up to 100 EeV. A...
The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or
electromagnetically at very small angles. The first arm of the system was installed last year and AFP took data in several commissioning and physics runs. The installation of the second arm is ongoing and will be completed in time for the 2017 data taking period. This will allow...
A simultaneous fit of parton distribution functions (PDFs) and electroweak
parameters to HERA data on deep inelastic scattering is presented. The input
data are the neutral current and charged current inclusive cross sections
which were previously used in the QCD analysis leading to the HERAPDF2.0
PDFs. In addition, the polarisation of the electron beam was taken into
account for the ZEUS data...
The T2K long-baseline neutrino experiment has new neutrino cross-section measurements. In addition to being interesting in their own right, measuring neutrino cross sections is vital as they correspond to a major systematic uncertainty for neutrino oscillation analyses. In particular, the new results focus on exploiting the water targets
in the T2K off-axis near detector, ND280, updating our...
Several theories, like the Minimal Supersymmetric Standard Model, predict a high mass neutral Higgs boson with a significant decay rate into the bb, mu-mu or tau-tau final states. The search for a scalar resonance in fermion decay channels is presented, using about 36 fb-1 of p-p collisions at 13 TeV.
We report on the first observation of excited hadronic states in both the charm and beauty sector with special emphasis on the observation of five excited Omega_c states.
Similar techniques are used to analyse LHCb data for short-lived intermediate bound-states formed during the multi-body decay of b-hadrons.
The Belle II experiment at the SuperKEKB collider is a major upgrade of the KEK ``B factory'' facility in Tsukuba, Japan. The machine is designed for an instantaneous luminosity of 8x10^35 cm^-2s^-1, and the experiment is expected to accumulate a data sample of about 50 ab^-1 in five years of running. With this amount of data, decays sensitive to physics beyond the Standard Model can be...
The matter formed in central heavy-ion collisions at a few GeV per nucleon is commonly understood as resonance matter, a gas of nucleons and excited baryonic states with a substantial contribution from mesonic, mostly pionic excitations. Yet, in the initial phase of the reaction the system is compressed to beyond nuclear ground state density and hence substantial modifications of the hadron...
The balloon-borne ANITA experiment is designed to detect the radio-frequency Cherenkov radiation resulting from collisions of either ultra-high energy (UHE) neutrinos colliding with ice molecules, or cosmic rays interacting with air molecules in the atmosphere. Thus far, four flights over the last decade have yielded world's-best sensitivity in the E>1 EeV regime. The HiCal experiment,...
Using inclusive DIS cross sections measured with the H1 experiment at HERA, electroweak parameters of the Standard Model are probed. The cross sections were determined using longitudinally polarized lepton beams, which enhances the sensitivity to the vector couplings of the light quarks. The quark couplings and the electroweak mixing angle are probed through the $\gamma/Z$ interference. This...
The latest results from ATLAS on heavy flavour and quarkonium production, including exotic states, are presented. This talk includes the measurement of B-hadron pair production, presented as a function of a variety kinematic variables between the two B-hadrons, providing important inputs to modelling of production via gluon splitting. Additional Insight into QCD models of quarkonium...
MicroBooNE is a liquid-argon-based neutrino experiment, which is collecting data in the Fermilab Booster Neutrino Beam. MicroBooNE will directly probe the source of the anomalous excess of electron-like events in MiniBooNE, while also measuring low-energy neutrino cross sections and providing important R&D for future detectors. It is the first of three liquid argon TPC detectors planned for...
A summary of recent progress of MSSM Higgs searches in CMS experiment. And also including Higgs like resonance searches with other BSM models, for example 2HDM, Gravitons, etc.
We study the naturalness properties of the B − L Supersymmetric Standard Model (BLSSM) and compare them to those of the Minimal Supersymmetric Standard Model (MSSM) at both low (i.e., Large Hadron Collider) energies and high (i.e., unification) scales. By adopting standard measures of naturalness, we assess that, in presence of full unification of the additional gauge couplings and...
New and recent results from the ATLAS programme of studies in EW physics with open beauty are presented. FCNC processes are sensitive to NP contributions, in particular through additional electroweak loop amplitudes. The angular analysis of the decay of Bd -> K* mu mu for a number of angular coefficients are measured as a function of the invariant mass squared of the di-muon system for data...
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this talk a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is
introduced, verified, and applied to study particle production at $E_{Kin}$ =
0.4 - 2 A GeV in Au+Au collisions. First SMASH results for strangeness production are presented....
The Deep Underground Neutrino Experiment (DUNE) experiment, a 40-kton underground liquid argon time-projection-chamber detector, will have unique sensitivity to the electron flavor component of a core-collapse supernova neutrino burst. We present expected capabilities of DUNE for measurements of neutrinos in the few-tens-of-MeV range relevant for supernova detection, and the corresponding...
I present theoretical results for charged Higgs production in association with a W boson or a top quark at the LHC. I calculate higher-order threshold corrections and show that they are very significant. I present detailed results for total cross sections as well as transverse-momentum and rapidity distributions of the Higgs boson for various LHC energies.
A general overview of the landscape for WIMP and non-WIMP DM at colliders is presented, highlighting new results but also showcasing the directions of the search program of the two general purpose experiments ATLAS and CMS towards the full Run-2 dataset.
I will show how transport calculations, interfaced with a realistic hydrodynamic modeling of the background medium, allow one to provide predictions for momentum and angular distributions of heavy-flavour particles in high-energy nuclear collisions, to be compared eventually with experimental data (D/B-mesons and their decay products). The presence of a hot-deconfined medium (Quark-Gluon...
A global analysis of neutrino masses and mixings, performed within the standard three-neutrino framework, is presented. The combination of current data coming from oscillation experiments, neutrinoless double beta decay searches, and cosmological surveys, provides interesting constraints on the known mass-mixing parameters, as well as intriguing hints on the unknown ones. Concerning the...
The production of electroweak gauge bosons in association with a jet, V+jet, constitutes an important class of standard-candle processes at the LHC. The requirement of an additional hadronic jet in the final state introduces a direct sensitivity to the strong coupling constant and the gluon PDF, while still retaining a large event rate. As such, V+jet production provides an ideal testing...
The talk provides an overview of the status of SUSY breaking scenarios. The focus will be on the way the electroweak symmetry breaking is achieved and understood in different scenarios. Various aspects of naturalness and its implication will be discussed and compared.
I present results for the invariant and helicity amplitudes in the transitions
$\Lambda_b~\to~\Lambda^\ast(J^P)~+~J/\psi$ where
$\Lambda^\ast(J^P)$ are $sud$-resonances with
$J^P=\frac12^{\pm},\frac32^{\pm}$. The calculations are performed in
the framework of our covariant confined quark model.
We find that the values
of the helicity amplitudes for the $\Lambda^\ast(1520,\,\frac32^-)$
and...
In coming years the LHC is expected to undergo upgrades to increase both the energy of proton-proton collisions and the instantaneous luminosity. In order to cope with these more challenging LHC conditions, upgrades of the ATLAS trigger system will be required. This talk will focus on some of the key aspects of these upgrades. Firstly, the upgrade period between 2019-2021 will see an...
Several theories beyond the Standard Model, like the 2HDM, predict the existence of high mass charged Higgs particles. Such charged Higgs, produced in association with a top quark or in VBF, are searched for in several decay channels, using about 36 fb-1 of p-p collisions at 13 TeV.
ATLAS has embarked on a major program of development in its offline software framework and the indexing of the data. In this paper we outline the motivations for such major changes, based on expected CPU evolution in the next decade, the increasing need to use memory more efficiently, and the increase of data volume expected for the LHC Run 3. The offline software framework, Athena will...
I review theoretical progress in the study of semileptonic tree-level B decays and its interplay with recent experimental results. In particular, I focus on two anomalies: the ratios $R(D)$, $R(D^{*})$:
$R(D^{(*)})=\frac{BR(B-> D^{(*)} \tau \bar \nu_\tau)}{BR(B-> D^{(*)} \ell \bar \nu_\ell)}$
and the inclusive vs exclusive determination of $|V_{cb}|$.
I review several explanations for such...
The production of jets in association with vector bosons is an important process to study perturbative QCD in a multi-scale environment. The ATLAS collaboration has performed new measurements of vector boson + jets cross sections, differential in several kinematic variables, in proton-proton collision data taken at center-of-mass energies of 8 TeV and 13 TeV. The measurements are compared to...
The LHC heavy-ion physics program aims at investigating the properties of the Quark-Gluon Plasma, QGP, formed in such collisions. Heavy quarks (charm and beauty) are regarded as efficient probes to study and characterize the QGP, as they are created on a very short time scale in initial hard processes and subsequently experience the entire system evolution interacting with the medium...
We report on searches for new physics in events with one or more jets and missing transverse energy. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of supersymmetry.
The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring delta_CP with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from...
I consider the Standard Model extended by a heavy scalar singlet and derive the low-energy effective theory resulting from integrating out the heavy state. This exercise in effective field theory serves to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. I discuss power-counting aspects and...
A new measurement of a spatially extended gamma-ray signal from the center of M31
was published recently, reporting that the emission broadly resembles the so-called
Galactic center excess of the Milky Way (Ackermann et al. 2017, arXiv:1702.08602).
In this talk we discuss the possibilities that the signal originates from a
population of millisecond pulsars, or alternatively the annihilation of...
The upcoming upgrade of the CERN LHC injectors during 2019-20 will boost the luminosity and the collision rate beyond the design parameters of several of the key ALICE detectors including the forward trigger detectors. The nominal Pb-Pb interaction and readout rate for ALICE after LS2 will reach 50 kHz. To face this challenge the Fast Interaction Trigger (FIT) is being designed and...
The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark...
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results on inclusive searches for supersymmetric squarks and gluinos, including third generation squarks produced in the decay of gluinos. The searches involve final states containing jets, missing transverse momentum...
LHC results on tree-level beauty decays
Tree-level beauty decays present crucial ingredients in the search for physics beyond the SM through quark flavour changing transitions.
This contribution covers recent LHC results in charged-current semileptonic decays and beauty decays to both charmed and charmless fully hadronic final states.
The semileptonic decays must be studied to determine the...
Charm quarks possess large masses and thus they are expected to be primarily produced at the initial stages of heavy-ion collisions. Hot and dense nuclear matter, usually referred to as the Quark-Gluon Plasma (QGP), can also be created in these collisions. Therefore, the QGP can be studied using charm quarks as penetrating probes via the in-medium energy loss, which is directly related to the...
The most recent results on the production of single W and Z bosons with two jets at high invariant mass at centre-of-mass energies of 7, 8 and 13 TeV are presented. Integrated and differential cross sections are measured in different phase space regions with varying degree of sensitivity to the electroweak production in vector boson fusion. The cross section for the electroweak W boson...
The talk aims to present the most recent results on heavy scalar search in diboson final states (WW,ZZ) combining different final states using full 2016 data collected by CMS detector.
The ARGO-YBJ experiment was installed in the Tibet region of China, 4300 meters above sea level. It run continuously from November 2007 until February 2013, with the goal of observing astronomical gamma-ray sources in the energy range between a few hundred GeV and about 100 TeV, and primary cosmic rays in the energy range between about 1 TeV and a few PeV. The unique feature of the ARGO-YBJ...
The study of the associated production of vector bosons and jets constitutes an excellent testbench to check numerous QCD predictions. Total and differential cross sections of vector bosons produced in association with jets has been studied at both 8 and 13 TeV center-of-mass energies. Differential distributions as function of a broad range of kinematical observables are measured and compared...
The future of connectivity is wireless, and the HEP community is not an exception. The demand for high capacity data transfer continues to increase year over year at a significant rate. This is an on-going race where technology and applications developers push into higher and higher bandwidths. For example the tracking detectors require readout systems with several thousand links that has to...
We address the present theoretical challenge to have a self-consistent description of both the $R_{AA}(p_T)$
and the elliptic flow $v_2(p_T)$ at both RHIC and LHC.
We describe the heavy quarks dynamics in the quark-gluon plasma (QGP) by means of
a Boltzmann transport approach in which the non-perturbative interaction between
heavy quarks and light quark is described by means of a quasi...
Several theories beyond the Standard Model, like the EWS or 2HDM models, predict the existence of high mass Higgs particles, which could decay into final states with Weak bosons. In this presentation the latest ATLAS results on these searches will be discussed, using about 36 fb-1 of p-p collisions at 13 TeV.
The presence of dark matter is known from cosmological observations yet it has so far escaped direct detection. As a consequence there has been renewed interet in hidden-sector models that predict new particles that are singlets with respect to the Standard Model (SM) gauge bosons and thus interact very weakly with the Standard Model particles.
The LHCb experiment allows to search for these...
We report on searches for new physics in events with one or more charged leptons, jets and missing transverse momentum. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of pair production of supersymmetric partners of gluons or quarks.
The Cherenkov Telescope Array is expected to lead to the detection of many new supernova remnants in the TeV and multiTeV range. In addition to the individual study of each, the study of these objects as a population can help constraining the parameters describing the acceleration of particles and increase our understanding of the mechanisms involved. Using Monte Carlo methods, the population...
Galaxy surveys require support from massive datasets in order to achieve precision estimations of cosmological parameters. The CosmoHub platform and SciPIC pipeline have been developed at the Port d'Informació Científica (PIC) to provide this support, achieving nearly interactive performance in the processing of multi-Terabyte datasets. Cosmology projects currently supported include ESA's...
We point out that the stringent lower bounds on the masses of additional neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded when flavour violation is allowed in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture arising from...
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results on inclusive searches for supersymmetric squarks and gluinos, including third generation squarks produced in the decay of gluinos. The searches involve final states containing jets, missing transverse momentum...
The nuSTORM facility will provide \nu_e and \nu_\mu beams from the
decay of low energy muons confined within a storage ring. The
instrumentation of the ring, combined with the excellent knowledge of
muon decay, will make it possible to determine the neutrino flux at
the %-level or better. The neutrino and anti-neutrino event rates are
such that the nuSTORM facility serving a suite of near...
Rare B decays with leptons in the final state are powerful probes to search for physics beyond the Standard Model (SM) as they can be calculated in the SM with high precision. We report recent results on rare B decays with leptons from the Belle experiment at the KEKB $e^+ e^-$ collider. The $B \to D^* \tau^+ \nu$ mode is sensitive to New Physics effects such as a charged Higgs or leptoquark...
Heavy quarks (charm and beauty) are probes of the Quark-Gluon Plasma (QGP) formed in high-energy nuclear collisions. They are produced in hard partonic scattering processes occurring in the initial stage of the collisions, propagate through the medium, and interact with its constituents, thus probing the entire evolution of the system.
The heavy-flavour production in proton-nucleus...
The dark photon, $A′$, the dark Higgs boson, $h′$, and the dark baryon, $B'$, are hypothetical constituents featured in a number of recently proposed Dark Sector Models. Dark Sector particles can be produced in the dark Higgs-strahlung and radiative processes, and in neutral $D$-meson decays channels. We will present results for the search of dark sector particles with prompt and displaced...
The associated production of vector bosons, W or Z, and jets originating from heavy-flavour quarks is a large background source in measurements of several standard model processes, Higgs boson studies, and many searches for physics beyond the SM. The study of events with one or two well-identified and isolated leptons accompanied by heavy-flavour jets is crucial to refine the theoretical...
The Recursive Jigsaw reconstruction technique provides a powerful way to tackle challenging SUSY final states with multiple missing particles. By altering the input "decay tree" we demonstrate a new approach to considering compressed SUSY signatures from a variety of different sources. The imposition of this decay tree provides a clear way to define which objects are associated with an ISR...
The next-generation B-factory experiment Belle II at the upgraded KEKB accelerator, SuperKEKB, will start physics data taking in 2018. It is an asymmetric e+e- collider that will operate with 40x the instantaneous luminosity of KEKB/Belle and aims to collect 50 times more data in total.
Belle II offers the possibility to search for a large variety of dark sector particles in the GeV mass...
We will discuss methods and results concerning the angular cross-correlation between sky-maps of the extragalactic background radiation in different wavelength bands.
The main goal of the study is to extract information on the clustering, redshift distribution and type of the unresolved non-thermal sources, especially at gamma-ray (and radio) frequencies.
We will show how this technique can be...
Precision tests of the Standard Model can be successfully performed at the LHC
only if QCD and EW radiative corrections are under control.
In this presentation I will discuss the non trivial interplay between the two sets of corrections, using several observables which can be measured in the Drell-Yan processes to illustrate the conceptual and technical problems that arise in the...
After measuring in 2012 a relatively large value of the neutrino mixing angle θ13, the door is now open to observe for the first time a possible CP violation in the leptonic sector. The measured value of θ13 also privileges the 2nd oscillation maximum for the discovery of CP violation instead of the usually used 1st oscillation maximum. The sensitivity at this 2nd oscillation maximum is about...
In this talk we would like to report on our recent calculations of the mixed QCD-EW corrections to the top- and bottom Yukawa couplings within the Standard Model (SM) and beyond (THDM, MSSM). After a brief review of the SM calculations, we would like to concentrate on the comparison SM/BSM and on the non-decoupling behavior of these corrections that might open a new window to indirect...
Performance & validation of new developments of reconstruction algorithms of several hadronic objects using data collected by the CMS experiment in 2016 at a centre-of-mass energy of 13 TeV are presented.
The jet energy and missing transverse momentum scales are measured in MC and data. A likelihood based discriminator is used to distinguish jets originating from quarks and gluons, and...
Strangeness production at high multiplicity gives indications on the transverse size fluctuactions in AA,pA and pp. In particular the universal behavior
of strange particle hadronization in small and large systems can be tested for the specific particle species, for different centralities and for large fluctuation of the transverse size
in pA and pp by using the recent ALICE data. The...
The identification of jets containing b-hadrons is key to many physics analyses at the LHC, including measurements
involving Higgs bosons or top quarks, and searches for physics beyond the Standard Model. In this contribution, the
most recent enhancements in the capability of ATLAS to separate b-jets from jets stemming from lighter quarks, and
the latest measurements to calibrate the...
Due to their large branching fractions and good theoretical uncertainties, semileptonic b-hadron decays are excellent tools to study the CKM matrix and b-hadron properties such as lifetimes. The LHCb experiment has a very good potential for studies of semi-leptonic decays of b-hadrons, due to its excellent muon identification capabilities and very good reconstruction of decay vertices. In this...
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.
To date, only two modes of production at hadron colliders of dark matter through new scalar or pseudoscalar mediators have been considered in the existing literature: pairs of dark matter particles produced through top quark loops with an associated hadronic jet in the event (monojet), and production of dark matter with pairs of heavy flavoured top or bottom quarks.
We present a third,...
We present new ALICE results on the production of strange and multi-strange hadrons in Pb-Pb collisions at the top LHC energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Strangeness production measurements are powerful tools for the study of the thermal properties of the deconfined state of QCD matter, the Quark-Gluon Plasma.
Thanks to its unique tracking and PID capabilities, ALICE is able to measure...
The precision era of neutrino physics requires measurements of absolute neutrino cross sections at the GeV scale with exquisite (1%) precision. These measurements are presently limited by the uncertainties on neutrino flux: the goal of the ERC ENUBET Project is to demonstrate that such uncertainties can be removed employing novel monitoring techniques of the leptons at the neutrino source. In...
The Two-Higgs-doublet model (2HDM) is one of the most studied extensions of the Standard Model. But just as the other popular "New Physics" models, it gets more and more constrained by recent experimental progress, especially by the LHC data. For all four 2HDM types with a softly broken $Z_2$ symmetry, we present updated results of global analyses obtained with the open-source HEPfit code. We...
The MAGIC telescopes, located at the Roque de los Muchachos
Observatory (2200 a.s.l.) in the Canary Island of La Palma,
are placed on the top of a mountain, from where a window of visibility of about $5^{\circ}$ in zenith and $80^{\circ}$ in azimuth is open in the direction of the surrounding ocean. This permits to search for a signature of particle showers induced by earth-skimming cosmic tau...
In this talk, we describe the computation of higher-order QED effects relevant in hadronic collisions. In particular, we discuss the calculation of mixed QCD-QED one-loop contributions to the Altarelli-Parisi splittings functions, as well as the pure two-loop QED corrections. We explain how to extend the DGLAP equations to deal with new parton distributions, emphasizing the consequences of the...
The availability of computing resources is a limiting factor in data collection at the LHCb experiment, due to the high production rate of beauty and charm hadrons. For Run 2, LHCb has implemented a novel approach to make optimal use of these resources: The output of the first software trigger stage is buffered to disk and the second stage is executed asynchronously, using 100% of the...
We report on searches for supersymmetry in scenarios where the mass differences between the lightest supersymmetric particles are small, or where their decay chains involve a Higgs boson. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of supersymmetry.
The Super-Kamiokande (SK) Collaboration has committed to the the SuperK-Gadolinium project that, by dissolving a Gd salt at 0.2 % in mass in the SK water, will upgrade the detector to be able to identify neutrons with very high efficiency. The current expected time
for refurbishment of SK and start of this new phase is 2018.
In this talk we present the physics benefits of high efficiency...
We present recent results on the extraction of Vcb from data on B->D^* l nu decays. Using two different parameterizations of form factors, we show how theory input from Heavy Quark Effective Theory or Light Cone Sum Rules affect the value of Vcb. The results show that the inconsistency of Vcb extractions in exclusive and inclusive decays needs a reappraisal.
Taking into account that LCH searches for New Physics are failing, the electroweak effective theory seems to be appropriate to deal with current energies. Tracks of new higher scales can be studied through next-to-leading corrections of the electroweak effective theory. Assuming strongly-coupled scenarios we have considered high-energy Lagrangians which incorporate explicitly new heavy fields....
In this talk, the centrality dependence of the $p_{\rm T}$ spectra of unidentified charged hadrons as well as of charged pions, kaons, (anti)protons and resonances in Pb-Pb collisions at the unprecedented energy of $\sqrt{s_{\rm{NN}}} = 5.02$ are presented. The $p_{\rm T}$-integrated particle yields are compared to predictions from thermal-statistical models and the evolution of the proton to...
It is well known that dark matter density measurements, indirect and direct detection experiments, importantly complement the LHC in setting strong constraints on new physics scenarios. Yet, dark matter searches are subject to limitations which need to be considered for realistic analyses. For illustration, we explore the parameter space of the phenomenological MSSM and discuss the interplay...
Isolated photons with high transverse energy components have been studied in $ep$
scattering with the ZEUS detector at HERA, using 326 pb$^−1$ integrated luminosity. The kinematic region includes photon virtualities 10 < $Q^2$ < 350 GeV$^2$. Photons with transverse energy 4 < $E_T^\gamma$ < 15 GeV and pseudorapidity −0.7 < $\eta^\gamma$ < 0.9 were measured with accompanying jets having...
New results on transverse momentum spectra of identified charged hadrons in proton-proton collisions at sqrt(s) = 13 TeV are presented using CMS detector at the LHC. Charged pions, kaons, and protons in the transverse-momentum range pT = 0.1-1.7 GeV/c and for laboratory rapidities |y| < 1 are identified via their energy loss in the CMS silicon tracker. The pT spectra and integrated yields are...
We present a search for a Higgs-like particle $\phi$ decaying into $b\bar{b}$ produced in association with $b$ quarks in p$\bar{p}$ collisions. The event sample corresponds to 5.4 $\text{fb}^{-1}$ of integrated luminosity collected with the CDF II detector at the Tevatron collider using a single $b$ tagged jet trigger. We search for an enhancement in the mass of the two leading jets in event...
The 40kt DUNE Far Detector, located at the Sanford Underground Research Facility, will offer unique capabilities for the study of atmospheric neutrinos. Due to the detector’s excellent energy resolutions, angular resolutions, and particle ID capabilities, atmospheric neutrino analyses in DUNE can provide valuable information about 3-flavor oscillations, despite the relatively modest...
I discuss the feasibility to search for supersymmetry in the decays of heavy Z' bosons, predicted by GUT-inspired U(1)' models, by investigating final states with charged leptons and missing energy in pp collisions at the LHC. I also investigate decays into pairs of the lightest MSSM neutralinos, which are Dark Matter candidates, and update the exclusion limits on the Z' mass, accounting for...
The Deep Underground Neutrino Experiment (DUNE) will employ a uniquely large Liquid Argon Time Projection chamber as the main component of its Far Detector. It will include four 10kt modules which will include single and dual-phase Liquid Argon technologies.
In order to validate its design, an experimental program been initiated which includes a beam test of large-scale DUNE prototypes at CERN...
The CKM angle gamma is the least well-known angle of the unitarity triangle, and the only one easily accessible at tree level. Important constraints on gamma are obtained from time dependent analysis of flavour-tagged Bs -> Ds K decays, and the latest results using the full LHCb Run 1 dataset are presented here. The ultimate goal of degree level precision for gamma requires exploitation of all...
ANTARES is the first undersea neutrino telescope and, at present, the largest one in the Northern hemisphere. Its main goal is the search for high-energy astrophysical neutrinos. It consists of an array of photomultipliers tubes housed in so-called optical modules, detecting the Cherenkov light induced along the path of relativistic charged particles originated by neutrino interactions in and...
I will present the latest results for global fits to the Higgs portal scalar singlet extended standard model using complementary probes of dark matter. In doing so I will introduce the new global and modular beyond the standard model inference tool (GAMBIT), which we use to achieve these results in a statistically consistent and modular way.
The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the proton structure. The ATLAS collaboration has performed precise measurements of the inclusive production of isolated prompt photons at a center-of-mass energy of 13 TeV, differential in both rapidity and the photon transverse momentum. In addition, the...
Hyper-Kamiokande is a next generation water Cherekov detector consisting of 2 tanks,each with 187 kton fiducial mass, to be built in a staged approach.
Hyper-Kamiokande will detect neutrinos produced by the upgraded J-PARC accelerator complex, as well as atmospheric neutrinos.
It will make precision measurements of neutrino mixing parameters by a combination of accelerator and atmospheric...
At the end of 2015 the ALICE experiment at the LHC has recorded Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, that complement the dataset from Run 1. Both datasets contain a variety of (anti-)(hyper-)nuclei produced in the collisions, namely (anti-)deuteron, (anti-)triton, (anti-)helium-3, (anti-)alpha and (anti-)hypertriton. Furthermore, the large high quality data sample of pp...
We report on searches for supersymmetric partners of top and bottom quarks. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted under several assumptions for the decay of these particles.
I present results of an analysis of scalar contributions in b→cτν transitions including the latest measurements of R(D(∗)), the q2 differential distributions in B→D(∗)τν, the τ polarization asymmetry for B→D∗τν, and the bound derived from the total width of the Bc meson. Scalar contributions with the simultaneous presence of both left- and right-handed couplings to quarks can explain the...
We present the plan for the Deep Underground Neutrino Experiment (DUNE) photon detector system and recent research and development work that has contributed to the design. DUNE will be composed of multiple liquid argon time projection chambers (TPCs). In order to determine the full 3D position of a particle in the detector its initial time must be known accurately. This initial time can be...
The IceCube detector has observed the first clear detection of a diffuse astrophysical high energy neutrino flux, however, the sources for these neutrinos have yet to be found. Hadronic interactions around cosmic ray accelerators result in both high energy gamma and neutrino fluxes for neutral and charged pion decays respectively. Observing cosmic ray sources with neutrinos provides unique...
A High Granularity Calorimeter (HGCAL) is presently being designed by the CMS collaboration to replace the existing end cap detectors. The HGCAL must be able to cope with the very high collision rates, imposing the development of novel filtering and triggering strategies, as well as with the harsh radiation environment of the High Luminosity LHC. In this talk we present an overview of the full...
Charmless b-hadron decays are CKM suppressed in the Standard Model, which brings the tree amplitudes to levels comparable with corresponding loop amplitudes. Hence, new particles not foreseen in the SM that appear in the loops may alter observables of these decays. We present the most recent measurements of branching ratios and CP asymmetries in charmless b-hadron decays to two- and multi-body...
Jet quenching in the hot, dense medium formed in Au+Au collisions leads to the suppression of high $p_T$ particles which can be studied with the measurement of the leading hadrons, like $\pi_0$. They can be used to investigate the mechanism of energy loss of partons in a QGP when varying the collision geometry.
Asymmetric Cu+Au collisions provide a system with similar energy density but...
The indirect searches for dark matter particles are a very hot topic of today's physics and astrophysics. The energy-mass content of the Universe is one of the biggest riddles of modern science. The Standard Model describes the physics of only a small fraction of the Universe. Although only gravitational interaction of the dark matter with normal matter was observed up to now, a lot of effort...
Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks with masses not too far from those of their Standard Model counterparts. Top or bottom squarks with masses less than or around one TeV can also give rise to direct pair production rates at the LHC that can be observed in the data sample recorded by the ATLAS detector. The talk...
We study Lorentz violation effects to flavor transitions of high energy
astrophysical neutrinos. It is shown that the appearance of Lorentz violating
Hamiltonian can drastically change the flavor transition probabilities of
astrophysical neutrinos. Predictions of Lorentz violation effects to flavor
compositions of astrophysical neutrinos arriving on Earth are compared with
IceCube flavor...
LHCb, while purpose built for b-physics, also functions as a general purpose forward detector, covering the pseudo-rapidity range 2.0 to 5.0. We present the latest measurements of W and Z boson production. These benchmark measurements are used to constrain the parton distribution functions that describe the inner structure of the proton, and to test the modelling of Standard Model processes....
We present the performance of Higgs boson property measurements and BSM Higgs searches using the CMS detector in the High-Luminosity LHC conditions, with an integrated luminosity of up to 3000 fb-1. Projections of 13 TeV analyses and 14 TeV simulation studies are both shown.
During the last years several Dark Sector Models have been proposed in order to address striking astrophysical observations which fail standard intepretations.
In the minimal case a new vector particle, the so called dark photon (U or A' boson), is introduced, with small coupling with Standard Model particles. Also, the existence of a dark Higgs boson h' is postulated, in analogy with the...
NA61/SHINE is a fixed target experiment at the CERN Super-Proton-Synchrotron. The main goals of the experiment are to discover the critical point of strongly interacting matter and study the properties of the onset of deconfinement. In order to reach these goals, a study of hadron production properties is performed in nucleus-nucleus, proton-proton and proton-nucleus interactions as a function...
Three key issues pertaining to the semi-leptonic RD(*) anomalies will be addressed here:
1) How robust are the SM predictions?
2) What are the model-independent collider signature of these anomalies?
3) What are some of the simplest BSM explanations for these?
In answer to 1) latest information from on and off the lattice will be critically
examined to question, in particular the reliability...
The Belle II experiment is a substantial upgrade of the Belle detector; it will operate at the SuperKEKB energy-asymmetric e+e− collider. The detector is in its final phase of construction and the accelerator has successfully completed the first phase of commissioning. The design luminosity is 8×1035cm−2s−1, and the Belle II experiment aims to record 50 ab−1 of data, a factor of 50 more than...
The intense photon fluxes of relativistic nuclei provide a possibility
to study photonuclear and two-photon interactions in ultra-peripheral collisions (UPC)
where the nuclei do not overlap and no strong nuclear interactions occur.
The study of such collisions provides information about the initial state of nuclei (nPDF).
Exclusive $J/\psi$ production in UPC which is sensitive to the...
Accelerator Driven System (ADS) subcritical reactors are being developed around the world. The main goals of this kind of facility are to produce energy and, at the same time, to dispose of nuclear waste, which will be used to power nuclear reactors. Since, by itself, used nuclear fuel is not able to sustain a chain reaction, the additional neutrons needed will be supplied by a high-intensity...
Massive photon-like particles are predicted in many extensions of the Standard Model with a hidden sector where dark matter is secluded. They are vector bosons mediating the interaction between dark matter particles and can be produced in scattering of ordinary particles through a faint mixing to the photon. Most of the present experimental constraints on this “dark photon” (A’) rely on the...
The discovery of the 125 GeV Higgs boson, which was the last missing element of the standard model (SM), provided us the insight that the electroweak symmetry breaking is done by a Higgs condensate in the vacuum, namely the Higgs mechanism. However the SM does not give the dynamics explaining why and how that Higgs condensate is formed. On the other hand, the SM can not provide candidate...
A new detector exploiting the technology of Cylindrical Gas Electron Multipliers (CGEM) has been proposed to replace the innermost tracker chamber of BESIII (Beijing Electron Spectrometer) experiment, which is suffering from aging due to the high luminosity of Beijing Electron Positron Collider (BEPCII).
The CGEM Inner Tracker will deploy several new features w.r.t. other state-of-art GEM...
We present the xFitter project (former HERAFitter) which provides a unique open-source software framework for the determination of the proton's PDFs and for the interpretation of the physics analyses in the context of Quantum Chromodynamics.
We highlight the new xFitter software release which includes state-of-the-art
theoretical developments. We present a novel determination of the photon...
Investigating the phenomenology of semileptonic $B_s$ meson decays allows to further constrain the Standard Model and explore new, independent channels to determine important parameters, like the CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$. Given different systematics of $B_s$ decays w.r.t. $B$ decays, this may help to shed light on the long-standing discrepancy between inclusive and...
I will explain various EFT approaches to learn about possible new physics lying beyond the SM. Particular emphasis will be put on EWSB physics and operators that break EW symmetry beyond the SM.
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs...
The strong nature of Composite Higgs models manifests at high energies through the growing behavior of the scattering amplitudes of longitudinally polarized weak bosons that leads to the formation of composite resonances as well as non resonant strong effects. In this work, the unitarity of these scattering amplitudes, computed on the framework of chiral perturbation theory, is used as tool to...
We live in a golden age for astro-particle physics, with a significant number of experiments actively monitoring high-energy Universe. Many of these probes provide excellent tests of particle physics models of dark matter particles. In particular, experiments such as Fermi -LAT, AMS-02, Ice Cube, ... are significantly cutting into the parameter space of one of the most popular candidates, the...
We present the most recent inclusive and differential measurements of multiboson production (VV, VVV) with data collected by the CMS during Run I & II.
I will review recent progress in the calculation of higher-order QCD corrections and their impact for precision measurements and new physics searches at the LHC.
I review the experimental indications in favor of short-baseline
neutrino oscillations. I discuss their interpretation in the framework
of 3+1 neutrino mixing with a sterile neutrino at the eV scale. I
present the results of the updated 3+1 global fit including the recent
MINOS, IceCube and NEOS data. I discuss the implications for future
neutrino oscillations and neutrinoless double-beta...
The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap...
Measurements of the cross sections of the production of pairs of electroweak gauge bosons at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale.
The ATLAS collaboration has performed new measurements of integrated and differential cross sections of the production of heavy di-boson...
Abstract content
We consider models of chaotic inflation driven by the real parts
of a conjugate pair of Higgs superfields involved in the
spontaneous breaking of a grand unification symmetry at a scale
assuming its Supersymmetric value. Employing Kaehler potentials
with a prominent shift-symmetric part proportional to c- and a
tiny violation, proportional to c+, included in a logarithm...
During the last two years the LHC produced pp collisions at the record center-of-mass energy of 13 TeV. The sensitivity of searches for new phenomena with a high mass scale greatly benefited from the energy increase with respect to the LHC run-1 data. Events with two hadronic jets in the final state are of particular interest: new phenomena produced in parton collisions are likely to produce...
The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is operating at the Large Hadron Collider (LHC) with proton-proton collisions at 13 TeV center-of-mass energy and at a bunch spacing of 25 ns. Challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC). We review the design and R&D studies for the CMS ECAL crystal...
The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillation at very short baseline and perform a precise measurement of the 235U anti-𝜈e spectrum at SCK•CEN BR2 in Belgium. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at several close stand-off distances ( ∼ 6-9m) from a...
We carefully study the implications of adiabaticity for the behavior of
cosmological perturbations. There are essentially three similar but
different definitions of non-adiabaticity: one is appropriate for
a thermodynamic fluid $\delta P_{nad}$, another is for a general matter field
$\delta P_{c,nad}$, and the last one is valid only on superhorizon scales.
The first two definitions coincide if...
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5 < Q^2 < 80$ GeV$^2$ and inelasticities $0.2 < y < 0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb$^{−1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and...
After the discovery of a Higgs boson, it is of great importance to study its properties under a minimal set of assumptions. The definition of a fiducial phase-space for the measurement of cross sections allows to minimise uncertainties due to extrapolations and to model dependence. A measurement of the Higgs boson differential fiducial cross sections is performed in several final states,...
The measurement of flow harmonics of charged particles from v_2 to v_7 in Pb+Pb collisions in the wide range of transverse momentum and pseudorapidity provides not only a way to study the initial state of the nuclear collisions and soft particle collective dynamics, but also provides insight into jet quenching via the measurement of flow harmonics at high transverse momenta. The longitudinal...
Results of searches for new physics in the dijet and multijet final states are presented. These include model-independent and model-specific searches using the dijet invariant mass spectrum and the dijet angular distributions, searches for black holes, quantum and microscopic, in multijet events, as well as searches for RPV SUSY in events with paired dijets. This talk focuses on the recent...
Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three W bosons or of a W boson...
The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimeter, except in the barrel region, where a scintillator-steel...
The excess of the antiproton flux and the antiproton-to-proton flux ratio beyond the prediction of the collision of ordinary cosmic rays is a unique signal from the Dark Matter model of neutralino annihilation. This excess can not come from pulsars. We present precision measurements by AMS of the antiproton flux and the antiproton-to-proton flux ratio in the absolute rigidity range from 1 to...
We analyze two models in which primordial inflation has non-standard features. In the first model we study the evolution of a system in which the inflaton is slowed down by dissipation of energy into gauge bosons instead of the usual Hubble friction: in particular we study the conditions of the onset of such a scenario from a static field configuration and we briefly mention some difficulties...
The $v_{2}$ and $v_{3}$ anisotropy harmonics of charged particles and prompt $D^{0}$ meson are measured at |y|$\le$ 1 as a function of transverse momentum ($p_{T}$) and centrality classes in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV collected with the CMS detector. The results indicate that the charm quarks interact strongly with the QGP medium. Comparisons between theoretical predictions...
The latest results on the measurement of the fiducial and differential cross sections of the Higgs boson in the diphoton and 4l decay channels with the ATLAS detector are presented, using approximately 36 fb-1 of pp collision data collected at 13 TeV.
We present measurements of multi-differential Jet cross sections over a wide range in transverse momenta from inclusive jets to multi-jet final states. We present studies on the impact these measurements have on the determination of the strong coupling alphas as well as on parton density functions. We also show angular correlations in multi-jet events at highest center-of-mass energies and...
The high-precision HERA data are used to search for Beyond the Standard Model contributions to electron-quark scattering in the framework of eeqq contact interactions (CI). Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering are considered, corresponding to a luminosity of around 1 fb$^{-1}$. The analysis of the inclusive $ep$...
In the recent years, major milestones in neutrino physics were accomplished at nuclear reactors: the smallest neutrino mixing angle $\theta_{13}$ was determined with high precision and the emitted antineutrino spectrum was measured at unprecedented resolution. However, two anomalies, the first one related to the absolute flux and the second one to the spectral shape, have yet to be solved. The...
The production of massive vector boson pairs is a key process for the understanding of the non-abelian gauge structure of the standard model and for the comprehension of the electroweak symmetry breaking mechanism. The study of the production of vector boson pairs with the presence of two jets in the event allows to measure the electroweak production of vector bosons in association with jets,...
LHCb is one of the four main experiments at the Large Hadron Collider (LHC) at CERN, focused on the study of CP violation and rare decays of b and c quarks. The Ring-Imaging Cherenkov (RICH) system is a crucial component of the LHCb experiment providing identification of charged particles over a large momentum range (2-100 GeV/c) and angular acceptance (15-300 mrad). The LHCb RICH performed...
The two-wave quark production scenario can be investigated experimentally by measurements of balance functions of identified particle pairs [1]. By studying the balance functions of several hadronic species, one can gain insight into the chemical evolution of the QGP and radial flow. In a picture of early hadronization, pairs of particles and anti-particles (created at the same spacetime...
The low-energy dynamics of a generic self-gravitating media can be studied by using effective field theory in terms four derivatively coupled scalar fields. Imposing SO(3) internal spatial invariance, the theory describes fluids, superfluids, solid and supersolids. Dynamical and thermodynamical properties of the medium are dictated by internal symmetries of the effective theory. From the...
We study the effects of dimension-six operators on the Higgs decay into
four lepton channel. The calculation of new matrix elements has been
performed in the so-called Higgs basis and it is
implemented in a Monte Carlo event generator.
A mapping between the parameters of the phenomenological Lagrangian
and those of the Warsaw and SILH bases is also implemented.
We consider all the relevant...
A flexible trigger system, excellent vertex locator, invariant mass resolution and forward acceptance allow unique exotica measurements to be performed at LHC energies using data collected with the LHCb detector. A summary of results will be presented, focusing in searches involving low mass dimuon resonances, sensitive to a wide range of New Physics models.
The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant.
The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass...
We analyze cosmic-ray antiproton observations in the light of dark matter (DM) annihilation in our Galaxy using the recent precise AMS-02 measurements. Taking into account cosmic-ray propagation uncertainties by fitting at the same time DM and propagation parameters we find a significant indication of a DM signal for various annihilation channels in the mass range between 40 and 130 GeV and...
I will discuss the structure of the loop corrections in the case of the non-linear EW effective theory and compare it with the low-energy contributions from the exchange of heavy resonances. The convenience of using either the non-linear HEFT or the linear SMEFT will depend on the interplay of the scales that control these two types of contributions.
DANSS (JINR, Dubna and ITEP, Moscow) is a one cubic meter highly segmented solid scintillator detector.
It consists of 2500 scintillator strips (100x4x1 cm3), covered with
gadolinium loaded reflective coating and read out by SiPMs via wave length shifting fibers. Groups of 50 strips are also read out by conventional PMTs. DANSS is placed under a 3 GW reactor at the Kalinin NPP (Russia) on a...
DarkSide-20k is a proposed 20 tonne fiducial mass liquid argon TPC that will perform an instrumental background-free search for WIMP dark matter. The TPC will be outfitted with more than 125,000 silicon photomultipliers (SiPM) grouped into 5210 single-channel, $25\ {\rm cm}^2$ photosensors that are sensitive to single photoelectrons, and will be filled with low radioactivity Argon extracted...
We show that the dimension of spacetime becomes complex-valued when its short-scale geometry is invariant under a discrete scaling symmetry. This characteristic can arise either in quantum gravities based on combinatorial or multifractal structures or as the partial breaking of continuous dilation symmetry in any conformal-invariant theory. With its infinite scale hierarchy, discrete scale...
We study electroweak baryogenesis driven by up-type heavy quarks in
a general two Higgs doublet model with $CP$ invariant Higgs potential.
With Higgs sector couplings and an additional top Yukawa coupling $\rho_{tt}$
all of $\mathcal{O}(1)$ in strength, one naturally has sizable $CP$ violation
that fuels a cosmic baryon asymmetry. Even if $\rho_{tt}$ vanishes, the flavor violating...
We present results on measurements of characteristics of events with jets, from jet-charge over investigations of shapes to jet mass distributions. The measurements are compared to theoretical prediction including those matched to parton shower and hadronization.
PROSPECT is a reactor antineutrino experiment consisting of a segmented 6Li-loaded liquid scintillator antineutrino detector designed to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. The experiment will be located at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab. The three ton detector will be located 7-12 m from the...
In nucleus-nucleus collisions, the Quark-Gluon Plasma behaves like a perfect fluid and the azimuthal anisotropy of the observed particle final-state distributions reflects its properties. This anisotropic flow, arising mainly from initial-state geometry and its fluctuations, highlights the collective behavior of the particles produced in the collision. It is well-described by hydrodynamics and...
The production of a pair of Higgs bosons provides a direct handle on the structure of the Higgs field potential. While the HH production within the SM is very small and essentially out of the experimental reach within the LHC Run II, several beyond SM theories foresee an enhancement that can be already probed with the available data. The latest searches for resonant and non-resonant Higgs pair...
We report on the most recent searches for unknown low-mass states performed with the data collected by the BaBar detector at the PEP-II e+e- collider.
The first search is based on a sample corresponding to 53 fb−1 of e+e− collision data collected with a special single-photon trigger. We look for events with a single high-energy photon and a large missing momentum and energy, consistent with...
Many new physics models, e.g., compositeness, see-saw, and extra dimensions models, are expected to manifest themselves in the final states with leptons and photons. This talk presents searches for new non-resonant phenomena in the final states that include leptons and photons, focusing on the recent results obtained using data collected during the 2016 run.
The direct observation of high-energy cosmic rays, up to the PeV region, will depend on highly performing calorimeters, and the physics performance will be primarily determined by their geometrical acceptance and energy resolution.Thus, it is fundamental to optimize their geometrical design, granularity, and absorption depth,with respect to the total mass of the apparatus, probably the most...
The angular correlation function (CF) refers to the correlation of particles in the relative pseudorapidity and relative azimuthal angle. It is used to study strongly interacting matter properties at relativistic energies. Recent results from the ALICE experiment at LHC show unexpected structures of CF in the proton-proton and antiproton-antiproton correlations. Also results from the STAR...
I will describe the physical mechanisms and the actual bounds that CMB anisotropy studies put on primordial black holes, notably if they constitute a sizable fraction of dark matter. Both mass-independent gravitational effects (linked to mergers) and mass-dependent ones (due to electromagnetic energy injection) will be covered. I will also briefly comment on the complementarity of other...
The large equivalent-photon fluxes accompanying Pb ion beams at the LHC initiate photon-photon and photo-nuclear interactions which dominate when the colliding nuclei have large impact parameter (ultra-peripheral collisions). These electromagnetically-induced processes are sensitive to the nuclear wave-function and in particular the nuclear modifications of the nucleon parton distribution...
We compute cross section for the production of three jets in electron-positron annihilation at next-to-next-to-leading order (NNLO) accuracy. We use a general subtraction scheme developed for computing QCD jet cross sections in perturbation theory. This method is implemented in the Monte Carlo for the CoLoRFulNNLO Subtraction Method (MCCSM) program that provides a general framework for...
An enhanced production of two Higgs bosons would be a clear sign of beyond Standard Model physics. A search is performed for resonant and non-resonant excess production, including several decay channels of the two Higgs bosons. The analysis uses about 36 fb-1 of p-p collisions at 13 TeV.
Many theories beyond the Standard Model predict new phenomena which decay to well isolated, high-pt leptons. Searches for new physics models with these signatures are performed using the ATLAS experiment at the LHC. The results reported here use the pp collision data sample collected in 2015 and 2016 by the ATLAS detector at the LHC with a centre-of-mass energy of 13 TeV.
The SOX project aims at searching eV scale sterile neutrinos by means of a powerful anti-neutrino source located very close to the Borexino detector at the Gran Sasso Laboratory in Italy
The source will be made with a sample of Ce-144 completely shielded by a thick tungsten container and will be located at 8.25 m from the center of the Borexino detector. The total activity will be around 150...
In an accelerating universe a maximum radius exists above which a shell of test particles cannot collapse and disperses due to the cosmic expansion. Observations of this turnaround radius for large structures could constrain the
effective equation of state of dark energy. We use the Hawking quasilocal mass to make the concept of turnaround radius well defined in general relativity and
then we...
Silicon Photomultipliers (SiPM) are standard sensors widely employed for applications in which high sensitivities and fast responses in the detection of low fluxes of visible and UV photons are required.
The Italian Institute of Nuclear Physics (INFN), in collaboration with Fondazione Bruno Kessler (FBK), is involved in a R&D project for SiPM sensors sensitive to near UV wavelengths.
The...
We will report on our results for light-by-light scattering in
ultraperipheral Pb-Pbcollisions at the LHC.
We calculate cross section for the elementary $\gamma \gamma \to \gamma \gamma$
subprocess taking into account the following contributions:
(a) box mechanisms with leptons and quarks in the loops,
(b) VDM-Regge mechanism (fluctuation of both photons to vector mesons
and their...
High Energy Factorisation was applied so far almost exclusively to Deep Inelastic Scattering process, as computing gauge invariant matrix elements with off shell external legs is a highly non trivial task. In recent years, this problem has been completely solved in a variety of ways, both analytically and numerically. The times are mature to produce the first phenomenological predictions.
We...
We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity...
Direct dark matter searches are promising techniques to identify the nature of dark matter particles. A variety of experiments have been developed over the past decades, aiming to detect Weakly Interactive Massive Particles (WIMPs) via their scattering in a detector medium. Exploiting directionality would also give a proof of the galactic origin of dark matter making it possible to have a...
The exploration of the QCD phase diagram is the most important task of present heavy ion experiments. In particular, we want to study the phase transition from hadronic to partonic matter and look for the critical point (CP) of strongly interacting matter. Fluctuations and correlations in kinematic characteristics and particle yields may help to locate the CP (in analogy to enlarged...
In the Standard Model of the Electroweak Interactions the value of the
Higgs trilinear self-coupling is predicted from its relation to the
Higgs mass and the Fermi constant. However, the experimental
verification of this prediction through the measurement of the double
Higgs production is extremely challenging.
I present the possibility of probing an anomalous trilinear coupling
indirectly,...
Numerous new physics models, e.g., theories with extra dimensions and various gauge-group extensions of the standard model, predict the existence of new particles decaying to leptons and photons. This talk presents CMS searches for new resonances in the dilepton, lepton+MET, diphoton, and other final states that include leptons and photons, focusing on the recent results obtained using data...
The JSNS2 experiment aims to search for the existence of neutrino
oscillations with Delta m2 near 1eV2 at the J-PARC Materials
and Life Science Experimental Facility (MLF). With the 1 MW of 3 GeV
proton beam created by Rapid Cycling Synchrotron (RCS) and spallation
neutron target, an intense neutrino beam from muon decay at rest is
available....
The emergence of the Chiral Magnetic Effect (CME) and the related anomalous current is investigated using the real time Dirac-Heisenberg-Wigner formalism. This method is widely used for describing strong field physics and QED vacuum tunneling phenomena as well as pair-production in heavy-ion collisions. We extend earlier investigations of the CME in constant flux tube configuration by...
In this presentation the R&D of a gas detector prototype for high precision tracking of low energy nuclear recoils over large gas volumes will be presented.
In our prototype, the scintillation light accompanying the electronic avalanches in a triple GEM structure is detected by a CMOS-based camera through a suitable lens. The CMOS sensors provide a very high granularity along with a very low...
Recent results on the resummation of soft gluon corrections to the $pp \rightarrow t \bar{t} H$ cross section at the LHC will be presented. The resummation was carried out at next-to-next-to-leading-logarithmic (NNLL) accuracy using the Mellin space technique and matched to the NLO cross section. The process probes directly the top-Higgs Yukawa coupling that may be particularly sensitive to...
Clusters of galaxies are unique cosmological probes sensitive to the primordial density fluctuations, and the expansion history and energy content of the Universe. The thermal Sunyaev-Zeldovich (tSZ) effect is an observable of choice for cluster cosmology due tothe low scatter in the relationship between SZ flux and cluster mass, and the construction of large tSZ selected cluster catalogs by...
In this presentation, we review the general features of integrand-reduction techniques with a particular focus on their generalization beyond one loop. We briefly summarize the ongoing efforts in the field, whose ultimate goal is the development of efficient alternative computational techniques for the evaluation of Feynman integrals beyond one loop. Finally, we describe some recent...
In composite Higgs models, new composite pseudo-scalars (as an $\eta$ or an $\eta^{\prime}$-like state) can interact with the Higgs and with gauge bosons via anomalous interactions, which stem from the topological structure of the theory. A future 100 TeV pp collider (FCC) will be able to test these anomalous interactions and thus to shed light on the strong dynamics which generates the Higgs...
Three-flavour neutrino oscillations have proved very successful in describing the observed neutrino oscillation data. However, there are also some anomalies, including the excesses of appeared electron neutrino interactions in LSND and MiniBooNE, and a sterile neutrino state at a larger mass-splitting scale can provide an explanation for these results.
The MINOS/MINOS+ experiment was a...
LHCb, while purpose built for b-physics, also functions as a general purpose forward detector, covering the pseudo-rapidity range 2.0 to 5.0. LHCb has measured forward top production using final states accessible from both single top and top pair production processes. Measurements in the LHCb acceptance have particular sensitivity to high and low values of Bjorken-x when compared to other LHC...
In this contribution we will present the progresses toward the construction of a silicon tracking system able to measure the passage of charged particles with a combined precision of ∼ 10 ps and ∼ 10 μm, either using a single type of sensor, able to concurrently measure position and time, or a combination of position and time sensors.
The recent development of controlled multiplications in...
I present our work on simulating the Glasma in the early stages of heavy ion collisions in a non-boost-invariant setting. Our simulation is based on the colored particle-in-cell method, which is used to numerically solve the Yang-Mills equations in 3+1 dimensions. This approach allows us to describe colliding nuclei with finite longitudinal width by extending the McLerran-Venugopalan model to...
Cosinus is a R&D project aiming for the cryogenic operation of NaI-crystals to search for elastic dark matter scattering. NaI-crystals are scintillating and
the combined measurement of the scintillation light and the phonon signal allows a precise measurement of the deposited energy and a good separation between signal and background events. However, NaI is hygroscopic and requires a special...
Latest 13 TeV results of CMS searches regarding the Higgs boson production in association with top quarks will be presented. This talk will cover the different CMS analyses covering the main Higgs boson decay modes (gamma gamma, ZZ, WW, and tautau).
In this presentation I will talk about QUBIC, an experiment that takes up the challenge posed by the detection of primordial gravitational waves with a novel approach. Detecting the signature left by primordial gravity waves in the Cosmic Microwave Background (CMB) entails measuring a tiny polarized component of the CMB, the so-called B-modes, that is literally buried in polarized...
New Physics searches at colliders are usually conceived as the search of excesses in the number of events at a certain kinematic region. We emphasize that, whenever the process under study is mediated by a non-scalar particle, the final-state angular distribution has extra information related to the spin state of the mediator. We apply this
idea to the W and Z bosons at LHC, showing that...
Measurements of the inclusive and differential top-quark pair and single-top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider at center-of-mass energies of 8 TeV and 13 TeV are presented. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. Differential measurements of the...
At present most experiments at the CERN Large Hadron Collider (LHC)
are planning upgrades in the next 5-10 years for their innermost
tracking layers as well as luminosity monitors to be able to take data
as the luminosity increases and CERN moves toward the High Luminosity-LHC
(HL-LHC). These upgrades will most likely require more radiation
tolerant technologies than exist today. As a result...
The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections $1/Q^{2n}$, a nonperturbative generalization $A(Q^2)$ of the perturbative QCD running coupling $a(Q^2)$ ($\equiv \alpha_s(Q^2)/\pi$). Recent large volume lattice calculations for these dressing functions strongly...
Measurements of the inclusive and differential top quark pair production cross section in proton-proton collisions at 5.02 TeV, 7 TeV, 8 TeV and 13 TeV are presented using the CMS detector. The total cross section is measured using the lepton+jets, dilepton and fully hadronic channels, including the tau-dilepton and tau+jets modes. Indirect constraints on both the top quark mass and ɑS are...
DARWIN (DARk matter WImp search with liquid xenoN) will be an experiment
for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber. The first goal of Darwin will be to look for Weakly Interacting Massive Particles (WIMPs) pushing the sensitivity until the background of natural sources of neutrinos will be the dominant background. DARWIN's excellent...
In the idealized high-energy limit of heavy-ion collisions, the system right after collisions is described as an over-occupied gluonic plasma expanding in the longitudinal direction, which is called Glasma. The understanding of the quark dynamics in such a pre-equilibrium state is of prime importance as it has a direct connection to electromagnetic probes such as photons. We report on a...
As the Planck mission is delivering its ultimate results, it has become clear that much is still to be learnt from additional observations of the Cosmic Microwave background. In the light of current results and remaining questions, I will discuss the scientific case of some of the main future CMB projects, their complementarity, and how to address the challenges of measurement accuracy and of...
The associated production of the Higgs boson with top quarks should allow the direct observation of the coupling of the Higgs boson to top quarks. The channel also benefits for a large cross-section increase between 8 and 13 TeV. ATLAS results in the search for the Higgs boson in the ttH production mode based on about 36fb-1 collected data will be presented.
SBND (Short-Baseline Near Detector) is a 112 ton liquid argon TPC neutrino
detector under construction on the Fermilab Booster Neutrino Beam.
Together with MicroBooNE and ICARUS-T600, SBND will search for shortbaseline neutrino oscillations in the 1 $eV^2$ mass range. SBND will also perform
detailed studies of the physics of neutrino-argon interactions, thanks to a data
sample of millions of...
Proposed more than 30 years ago, axions are still the most compelling solution to the strong CP problem of the Standard Model. More recently their physics case has been considerably sharpened, as well as that of similar axion-like particles (ALPs) that generically emerge in diverse high-energy extensions of the Standard Model, notably string theory. Both axion and ALPs constitute very...
I will present an overview of the final results from the SDSS-III BOSS analysis (DR12). Using the galaxy power spectrum and correlation function, BOSS was able to measure the Baryon Acoustic Oscillations scale in two independent redshift bins to 1% precision. Such constraints allow to map out the expansion history of the Universe and represent one of the most important cosmological tools at...
We show the results of our recent global analysis of EPPS16 NLO nuclear parton distribution functions (nPDFs). For the first time, dijet and heavy gauge boson production data from LHC proton–lead collisions have been included in a global fit. Especially, the CMS dijets play an important role in constraining the nuclear effects in gluon distributions. With the inclusion of also neutrino–nucleus...
We present state-of-the-art, high-precision predictions for top-quark pair production in the di-lepton channel at the LHC.
Our results are based on the narrow-width approximation and include approximate NNLO corrections in the production subprocess, exact NNLO corrections in the decay sub-process as well as exact NLO-production/NLO-decay interferences.
We will briefly outline the structure...
Latest 13 TeV results of CMS searches for the Higgs boson produced in association with top quarks and decaying to b quarks will be presented. This talk will include the first CMS results for the fully hadronic channel with the matrix element method as well as the semi-leptonic and di-leptonic channels with the matrix element method and BDT discriminant.
Torsion models constitute a well known class of extended quantum gravity models. In this work, one investigates phenomenological consequences of a torsion field interacting in different ways with top quarks at LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top anti-top pair. ...
One of the hottest topics in present-day neutrino physics is provided by the hints of sterile species coming from the short-baseline (SBL) anomalies.
Waiting for a definitive (dis-)confirmation of these indications by future
SBL experiments, other complementary avenues can be explored in the
hunt of such elusive particles. An important opportunity is that offered by the
long-baseline (LBL)...
Combined HERA data on charm production in deep-inelastic scattering
have previously been used to determine the charm-quark running mass
$m_c(m_c)$ in the MSbar renormalisation scheme.
Here, the same data are used as a function of the photon virtuality $Q^2$
to evaluate the charm-quark running mass at different scales to one-loop
order, in the context of a next-to-leading order QCD...
With the growing diffusion of resistive Micromegas detectors in HEP experiments the study of long-term aging behaviour is becoming more and more relevant.
Two resistive bulk-Micromegas detectors were installed in May 2015 at the CERN Gamma Irradiation Facility exposed to an intense gamma irradiation with the aim to study the detector behavior under high irradiation and the long-term...
Electroweak bosons do not interact strongly with the dense and hot medium formed in nuclear collisions, and thus are sensitive to the nuclear modification of parton distribution functions (nPDFs). The ATLAS detector, optimised to search for new physics in proton-proton interactions, is well equipped to measure photons, W and Z bosons in the high occupancy environment produced in heavy-ion...
The high precision HERA combined measurement of inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering, corresponding to a luminosity of about 1 fb$^{-1}$, permits searches for new contributions to electron-quark scattering beyond the Standard Model up to TeV scales. A new approach to beyond the Standard Model analysis of the inclusive ep data is presented;...
The Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III has ushered in a new era for high-redshift quasar surveys studying the large-scale structure of the Universe through intervening absorption by the intergalactic gas. The unprecedented number of quasar absorption spectra provided by BOSS allows us to measure the expansion rate and geometry of the Universe at redshift z>2 using...
The latest results of searches for the Standard Model Higgs boson produced in association with a single top quark (tHq, tHW) are presented. The analyses have been performed using the 13 TeV pp collisions data recorded by the CMS experiment in 2015 and 2016.
Measurements of single top-quark production in proton-proton collisions are presented based on the 8 TeV and 13 TeV ATLAS datasets. For the production of single top-quarks and single anti-top-quarks in the t-channel, the total production cross sections, their ratio, as well as measurements of inclusive and differential cross-sections are presented. Measurements of the inclusive and...
The 760 ton liquid argon ICARUS T600 detector performed a successful three-year physics run at the underground LNGS laboratories, studying neutrino oscillations with the CNGS neutrino beam from CERN, and searching for atmospheric neutrino interactions in cosmic rays. A sensitive search for LSND like anomalous nu_e appearance was performed, contributing to constrain the allowed parameters to a...
We determine the charm quark mass $m_c(m_c)$ from QCD sum rules of moments of the vector current correlator calculated in perturbative QCD. Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the zeroth moment....
A prototype of a luminometer, designed for a future e+e− collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane operation, to study the development of the electromagnetic shower and to compare it with MC simulations. In addition, the effective Molière radius of this...
Type Ia supernovae (SNe Ia) have proved to be a successful probe of dark energy thanks to their property of standardizable candle allowing us to construct a supernova Hubble diagram with very low scatter through a two-parameter empirical light-curve correction. However, 0.15 magnitude intrinsic luminosity variation remains once corrections are applied, leaving plenty of room for a third...
The Daya Bay Reactor Neutrino Experiment currently holds for the most precise measurement of the third neutrino mixing angle θ13~8.4^o, which unlocked the gateway of studying the CP violation in the lepton sector, and the most precise measurement of |Δm^2_32|. The multiple detectors at different locations also allow for using relative energy spectral analysis to search for a light sterile...
Several measurements of single top quark production in proton-proton collisions at the LHC at centre-of-mass energies of 7, 8 and 13 TeV, using data collected with the CMS experiment, are presented. The analyses investigate separately the productions of top via t-channel exchange, in association with a W boson (tW) or via the s-channel. Final states with at least one charged lepton and one...
Beams of relativistic heavy ions accompanied by a large flux of equivalent photons, and photon-induced reactions are the dominant interaction mechanism in heavy-ion collisions when the colliding nuclei have transverse separation larger that the nuclear diameter. In these ultra-peripheral collisions (UPC) the photon can provide a clean probe of the partonic structure of the nucleus analogous...
Dark matter axions can generate peculiar effects in special types of Josephson junctions, so-called SNS junctions [1]. One can show that the axion field equations in a Josephson environment allow for very small oscillating supercurrents, which manifest themselves as a tiny wiggle in the I-V curve, a so-called Shapiro step, which occurs at a frequency given by the axion mass. The effect is very...
We present the results of a CMS search for a new Higgs boson-like resonance decaying into two photons in proton-proton collisions. We search for an excess of events over the standard model background prediction in the diphoton invariant mass spectrum.
Multijet processes have always been hard to model precisely in hadron collisions, and reliance of experimental studies and searches on Monte Carlo simulations has been problematic, at times resulting in controversies and retractions. Nowadays matrix-element-based tools can accurately predict the general features of energetic collisions producing several hadronic jets, yet often the huge...
Motivated by the possible signals of lepton number violation in B physics, known as RD(*) and RK, RK$^*$ puzzles, we investigate whether
charm physics might offer a window to New Physics, too.
Relying on the existing lattice QCD and experimental results on charm leptonic and semileptonic weak decays, one can question presence of NP in the charge current transitions.
One can constrain the...
Gravitational lensing represents a unique tool to study the dark Universe. In the weak lensing regime small distortions in the images of galaxies caused by the large-scale structure can be detected over the whole sky. Measuring these coherent distortions yields cosmological insights complementary to other probes like the cosmic microwave background (CMB). Ongoing wide-field imaging surveys...
The exhibition "The beginning of everything ", which runs from October 2016 to August 2017, has been created in collaboration between the Natural History Museum Vienna and the Institute of High Energy Physics (HEPHY) of the Austrian Academy of Sciences and was visited by more than 300 000 people including about 120 000 children and youth until mid-March2017. „The beginning of everything“...
I will review the recent developments in the understanding of the dynamics of jets that propagate through QGP with particular emphasis on jet substructure. I will argue that substructure observables provide a novel direction in quenching studies.
Many supersymmetry models feature gauginos and also sleptons with masses less than a few hundred GeV. These can give rise to direct pair production rates at the LHC that can be observed in the data sample recorded by the ATLAS detector. The talk presents results from searches for gaugino and slepton pair production in final states with leptons, and were performed with pp collisions at a...
The LHC did not discover new particles beyond the Standard Model Higgs boson at 7 and 8 TeV, or in the first data samples at 13 TeV. However, the complementary nature of physics with e+e- collisions still offers many interesting scenarios in which new particles can be discovered at the ILC. These scenarios take advantage of the capability of e+e- collisions to observe particles with missing...
The study of Higgs boson properties form an important part of the LHC program. These studies are not only important for a better understanding of electroweak symmetry breaking mechanism but also for BSM searches. For example, most recently a strategy has been proposed to use LHC measurements of the Higgs transverse momentum distribution to constrain the Yukawa couplings of light-generation...
I will discuss the top-quark mass determination at the LHC, according to the
different methods used by the experimental collaborations.
In particular, I will investigate the theoretical uncertainty on the measured mass,
once interpreted in terms of the top-quark pole mass, taking particular
care about non-perturbative corrections due to bottom fragmentation in top decays.
The Compact Linear Collider (CLIC) is an option for a future
electron-positron collider operating at centre-of-mass energies from a
few hundred GeV up to 3 TeV. This contribution discusses the Higgs and
BSM physics reach of CLIC operating in several energy stages. The
presented results are based on physics benchmark analyses using full
detector simulations, several of which have been completed...
With over 3,000 members from 178 institutes, the ATLAS Collaboration is naturally diverse. However, capturing this diversity through pictures can be a challenge. Photography is a powerful tool, allowing us to reveal the faces behind a story and give the public the unique opportunity to understand and appreciate the human aspects of ATLAS’s scientific research.
The role of photographs in...
We report on searches for supersymmetry via pair production of partners of electroweak gauge and Higgs bosons. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of supersymmetry.
The Dark Energy Survey (DES) is a large galaxy survey designed to address the fundamental question of the accelerating expansion of the universe and uncover the nature of the dark energy. It started the data taking in 2013, providing high quality imaging for 1/8 of the sky. The talk will present the current status of the project and the most recent results, mainly based on data from the first...
We perform a comparative analysis of constraints on sterile neutrinos from the Planck experiment and from current and future neutrino oscillation experiments (MINOS, IceCube, SBN). For the first time, we express the Planck constraints on Neff and msterileeff from the Cosmic Microwave Background in the parameter space used by oscillation experiments using both mass-squared differences and...
Science education research suggests that STEM learning for young students may be especially enhanced through the combined use of inquiry and creativity in formal and informal settings. Consistent with the increasing emphasis on interdisciplinarity and the integration of the arts into STEM instruction (from STEM to STEAM), the CREATIONS initiative within the HORIZON-2020 framework brings...
We report the most recent measurements of the mass of the the top quark, performed by the D0 experiment at the Fermilab Tevatron collider using the full Run II (2001--2011) data set corresponding to an integrated luminosity of $9.7\ $fb$^{-1}$. This includes measurements in the dilepton channels using the matrix element and neutrino weighting approaches, as well as measurements in the...
The Esa satellite Euclid will launch in 2020. It will observe 15000deg2 of the darkest sky with his visible imager and his near-IR photometer and spectrograph.
The core science goal of the mission is to measure the evolution of the expansion of the universe up to redshift 2 in order to characterise deviations from the concordance LambdaCDM model, determine the evolution properties of dark...
High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities. Under these conditions the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly...
The COMPASS experiment at CERN has performed a rich programme in inclusive and semi-inclusive deep inelastic scattering of longitudinally polarised muons off longitudinally, transversely polarised and unpolarised nucleons. The main topic is the investigation of the spin structure of the nucleon in terms of quark and gluons, both through accessing the spin dependent collinear parton...
We study the nature of the flavor changing neutral couplings of the top quark with the Higgs boson and the up/charm quark in the tt¯ production at linear colliders. There are previous bounds on such tqH couplings at both, linear and hadronic colliders, with the assumption that it couples equally to the left and the right handed fermions. In this paper we examine the chirality of the tqH...
We report on searches for new physics in events with at least one photon, jets and missing transverse energy. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of supersymmetry.
Measurements of the top quark mass and width using proton-proton collisions at the LHC at centre-of-mass energies of 7, 8 and 13 TeV are presented. The analyses used different decay channels and production modes of the top quark. Several techniques are investigated based on the reconstruction of the top kinematics from final state products, using leptonic decays with a J/psi, the shapes of top...
In 2015 the COMPASS collaboration at CERN studied the Drell-Yan process with a 190 GeV/c π− beam on a transversely polarized ammonia target. From single-spin asymmetries COMPASS was able to determine amplitudes related to the proton Sivers, transversity and pretzelosity transverse momentum dependent (TMD) distributions. The most notable of these TMDs is the Sivers function which has...
CREATIONS is a three-year long European Union funded project, which aims to increase the young people’s interest in science. Sixteen partners from ten European countries develop creative approaches based on science and art for an engaging science classroom. The project is now in its 2nd year and a variety of events have already taken place. We have been developing advanced digital tools and...
In relativistic heavy-ion collisions, a hot medium with a high density of unscreened colour charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another...
The Large Synoptic Survey Telescope (LSST) is an automated ground-based 8.4m optical telescope, whose first observations are expected in 2023. The aim of this new instrument is to conduct a ten year wide and deep imaging survey of 18,000 square degrees of the sky in six broad optical bands, with a deep stack reaching magnitude $r=27.5$. The LSST design is driven by four science themes: dark...
The plan for the International Linear Collider is now being prepared as a staged design, with the first stage at 250 GeV and later stages achieving the full project specifications with 4 ab-1 at 500 GeV. This talk will present the capabilities for precision Higgs boson measurements at 250 GeV and their relation to the full ILC program. It will show that the 250 GeV stage of ILC will...
R-parity violation introduces new signatures to be considered in the search for supersymmetry at the LHC. Strongly interacting resonances may decay to jets, sleptons may decay via lepton-flavour violating processes and lightest supersymmetric particles may decay into many particles with or without missing transverse momentum. The talk presents recent results from searches of supersymmetry in...
The goal of the KArlsruhe TRItium Neutrino experiment (KATRIN) is to investigate the neutrino mass with a sensitivity of $0.2\,\mathrm{eV/c^{2}}$ by a high-resolution and high-statistics measurement of the end-point region of the $^{3}$H $\beta$-spectrum. The $\beta$-electrons start in the windowless gaseous tritium source and go into a differential and a cryogenic pumping section....
The BESIII Experiment at the Beijing Electron Positron Collider
(BEPCII) accumulated the world's largest e+e- collision samples
at Ecm = 3.773, 4.009, 4.18 GeV. Based on analyses of D(s)+ to l+v
(l=mu, tau), D -> K(pi)l+v (l=e or mu), D+ -> K-pi+e+v, D0(+) ->
f0(980)e+v, Ds+ -> eta(')e+v, we report the determinations of CKM
matrix elements |Vcs(d)|,the D(s)+ decay constants, the form...
I will present the first global fit results for supersymmetric models using the new Global And Modular BSM Inference Tool (GAMBIT). With GAMBIT we have performed fits of the GUT-motivated CMSSM, NUHM1 and NUHM2 models, as well as the weak-scale MSSM7, extending existing results in terms of the number of observables included, scanning techniques and treatment of nuisance parameters.
The GERDA (GErmanium Detector Array) experiment, located at the Laboratori Nazionali del Gran Sasso, is searching for neutrinoless double beta ($0\nu\beta\beta$) decay of $^{76}Ge$. Since the end of 2015, in Phase II of the experiment, 35 kg of enriched high-purity germanium detectors are operated in liquid argon, that serves as cooling for the detectors as well as active shield against...
After the Higgs boson discovery, the precision measurements and searches for new phenomena in the Higgs sector are among the most important goals in particle physics. Experiments at the Future Circular Colliders (FCC) are ideal to study these questions. Electron-positron collisions up to an energy of 350 GeV (FCC-ee) provide the ultimate precision with studies of Higgs boson couplings, mass,...
We study the gluon distribution produced via successive medium-induced branchings
by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that
under suitable approximations, the jet evolution is a Markovian stochastic process,
which is exactly solvable. For this process, we construct exact analytic solutions
for all the n-point correlation functions describing the...
The top quark mass is one of the fundamental parameters of the Standard Model. The latest ATLAS measurements of the top quark mass in top quark pair and single top final states are presented. A measurement using lepton+jets top-quark pair events is presented, where a multi-dimensional template fit is used to constrain the uncertainties on the energy measurements of jets. The measurement is...
This talk will present the status of the Advanced LIGO and Advanced Virgo detectors, a year after the first detections of gravitational waves emitted by two binary black hole coalescences. After a 10-month break due to upgrades, maintenance and commissioning, the Advanced LIGO detectors started their second ?Observation Run? (O2) on November 30th 2016. This data taking period is expected to...
The junior community in ALICE at the LHC, consisting of early-career scientists, forms an important and active body within the collaboration. It organizes a rich program with analysis tutorials and physics publication discussions. It also provides a collegial atmosphere for junior scientists to present their work and have lively discussions. In addition, the group is a vital element for junior...
The Large Hadron-electron Collider LHeC and the Future Circular Collider in electron-hadron mode FCC-eh will provide electron-proton collisions with center-of-mass energies in the range 1.3-3.5 TeV and instantaneous luminosities larger than $10^{34}$ cm$^{-2}$s$^{-1}$. With integrated luminosities of about 1 ab$^{-1}$, they provide large samples of Standard Model Higgs bosons in both neutral...
The precision measurement of the anomalous magnetic moment of the muon presently exhibits a 3.5σ discrepancy with the Standard Model (SM) prediction. In the next few years this measurement will reach an even higher precision at Fermilab and
J-PARC. While the QED and electroweak contributions to the muon g-2 can be determined very precisely, the leading hadronic (HLO) correction is affected by...
We present an alternative approach to the direct measurements of the top quark mass using D0 data. We discuss extractions of the pole mass of the top quark based on measurements of the inclusive and unfolded differential $p\bar p \to t\bar t$ production cross section as a function of $p_T(t)$ and $t\bar t$ mass.. We use the full Run II data set of $p \bar p$ collisions collected by the D0...
Understanding the energy loss of strongly interacting particles is of utmost importance for studying the quark‐gluon plasma (QGP). This very hot and dense state of matter is created during heavy‐ion collisions, like the ones performed at the LHC. As the lifetime of the QGP is very brief, special probes are necessary to study it. One of them consists in focusing on the energy loss of energetic...
The detection of gravitational waves from the merger of binary black holes during the first Advanced LIGO science runs has opened up a new field of astronomy, and a new window on the universe. During these runs, searches for different types of compact binaries are conducted. In this talk, I will review the detected black hole mergers, and discuss the implications of the non-detection of other...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. The construction of the experiment and, in particular, the installation of all towers in the...
The vast majority of high-energy physicists use and produce software every day. Software skills are usually acquired "on the go'' and dedicated training courses are rare. The LHCb Starterkit is a new training format for getting LHCb collaborators started in effectively using software to perform their research. The initiative, combining courses and online tutorials, focuses on teaching basic...
We present the con?guration in which a quark-antiquark pair with a fi?xed opening
angle emits a hard gluon inside a medium, and an additional very soft emission afterwards (double antenna). We discuss the coherence effects in terms of the survival probability, which describes the interaction of the quark-antiquark-gluon system with the medium. We generalize previous studies of the antenna...
Educational research has shown that girls are less likely than boys to take up science subjects in high school, in western countries, as shown e.g. by a UK [study][1] by the Institute of Physics. This has repercussions on professional choices made later.
For some years now CERN drives a variety of communication, education and outreach activities to encourage girls to take science subjects in...
In this talk I will give the theory overview for new long-lived particles at the LHC. I will describe some of the motivations including neutral naturalness and dark matter. I will also discuss some particularly spectacular signatures where current searches have limited sensitivity and where a joint experimental and theoretical effort to design new search strategies could result in discovery.
Overview of recent developments in the PDF field (new PDF sets, new directions), focusing on the most urgent challenges in the PDF fits and the PDF needs
from a point of view of an experimental physicists, for both precision observables and new physics searches.
I review the status of the top quark couplings studies. The discussion is focused on anomalous electroweak interactions, which are largely unconstrained by hadron collider experiments. Possible anomalous interactions in Quantum Chromodynamics are reviewed, as well. In addition to hadron collider experiments, I discuss constraints from B-physics experiments and future colliders.
The next to MSSM theory predicts the existence of a light pseudoscalar boson "a", and the decay of the Higgs boson into a pair of such particles. This scheme is searched for in several final states relative to different decay modes of the "a" particle, using about 10 fb-1 of p-p collisions at 13 TeV.
The observations of the presumed binary black hole coalescences GW150914 and GW151226 during the first observing run of Advanced LIGO have allowed us to probe the genuinely strong-field dynamics of Einstein's general theory of relativity (GR) for the first time. We give a brief overview of the tests carried out on the detected signals, which showed consistency with GR within the measurement...
NEXT (Neutrino Experiment with a Xenon TPC) aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure gas xenon Time Projection Chamber using electroluminescence to amplify the signal from ionization. The two main advantages of this technology are a high energy resolution and the possibility of reconstructing the electron tracks in events with energies close to the...
Time-dependent CP-violation measurements allows to determine the mixing-induced CP-violating phases phi_s and beta. The measurement of the phase phi_s in the Bs-Bsbar system is one of the key goals of the LHCb experiment. It has been measured at LHCb exploiting the Run I data set and using several decay channels. In particular, the most recent Run I results that will be presented at this...
Gravitational-wave astronomy has made a tremendous stride forward with detections during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). The signals have been identified as originating from the merger of black holes, whose parameters it was possible to infer. This discovery has profound implications. Gravitational waves provide information on...