Conveners
Dark matter (direct detection): I
- Marc Schumann (University of Bern)
- Nassim Bozorgnia
- Julien Billard (IPNL - CNRS)
Dark matter (direct detection): II
- Julien Billard (IPNL - CNRS)
- Nassim Bozorgnia
Dark matter (direct detection): III
- Julien Billard (IPNL - CNRS)
- Nassim Bozorgnia (GRAPPA, University of Amsterdam)
The particle physics nature of the dark matter is one the top unknowns in physics. The Particle and Astrophysical Xenon (PandaX) project is a series of xenon-based experiments in the China Jin-Ping Underground Laboratory (CJPL). The first and second stage experiments (PandaX-I and II) both utilize dual-phase xenon time-projection chamber to carry out direct search for the dark matter...
The XENON program aims at direct detection of Weakly Interacting Massive Particles (WIMPs) detection with dual phase xenon time projection chambers (TPCs), located at the Laboratori Nazionale de Gran Sasso. This contribution is going to review recent results of the still operational XENON-100 detector, as well as discuss the status and prospects for the presently commissioned XENON-1T...
A brief introduction to two-phase xenon TPCs, the details of the LUX project, illustration of how signals are reconstructed, details of calibrations, analysis and background estimates, and presentation of the most recent results
DEAP-3600 is a liquid Argon detector with competitive sensitivity to dark matter interaction especially at high mass (above 100 GeV/c2). The detector is currently 25% full of liquid Argon and filling is expected to be completed in July 2016. When full, DEAP-3600 will hold 3600kg of liquid Argon within an acrylic sphere surrounded by 255 photo-multiplier tubes. Only the scintillation light is...
The DarkSide-50 experiment employs a dual-phase liquid argon time projection chamber inside a system of two active veto detectors to directly search for WIMP dark matter. DarkSide-50 has recently performed a background-free search using 70 live days of data with low radioactivity argon extracted from underground, setting the strongest limit to date on the WIMP-nucleon elastic cross section...
EDELWEISS experiment performs direct dark matter search by means of Ge heat-and-ionization bolometers operated at 18 mK in the underground laboratory of Modane (LSM, France). The third phase of the experiment is accumulating data using an array of twenty-four 800-g detectors with improved resolution and rejection capabilities relative to EDELWEISS-II. The performance of these detectors and the...
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) experiment, located in the Gran Sasso underground laboratory (LNGS) in Italy, searches for nuclear recoil events induced by the elastic scattering of dark matter particles in cryogenic detectors. The use of scintillating CaWO$_4$ crystals as absorbers allows the simultaneous measurement of a phonon and a light signal,...
The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. I will present a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods to...
The search for WIMP dark matter by direct detection faces an encroaching background due to coherent neutrino nucleus scattering. In this talk I will review the various types of neutrino that are backgrounds to direct detection - Solar, supernovae and atmospheric neutrinos - and explain how their presence results in the theoretical limit known as the neutrino floor. The proximity of the...
I will talk about ongoing research into aspects of the fact that the next generation of dark matter detectors will detect neutrinos. I will describe some of the physics which will be constrained using such detections and also new methods to both eliminate and study the neutrino background.
The direct detection experiments are reaching new limits in the upcoming searches. Among other things, they will be sensitive to the coherent neutrino scattering background. I will demonstrate the effect of new physics scenarios on the neutrino background at the direct detection experiments. I will further describe the impact on the dark matter constraints due to such a change in the neutrino...
An accurate determination of the local dark matter (DM) density is crucial to interpreting data from direct detection and certain indirect detection experiments, as it is degenerate with the DM-nucleon interaction strength. Here I give an update to our ongoing project to make a determination of the local DM density. Our method uses the positions and velocities of a set of tracer stars...
NEWS collaboration submitted Letter of Intent to the Gran Sasso Scientific
Committee last year. Since a few years a lot of R&D is undertaken in emulsion and scanning technologies in the collaboration. We would like to report ongoing activities; reporting the update on our sensitivity including the direction information. Please consider abstract below for oral presentation in the TeV particle...
The particle nature of dark matter is being investigated vigorously by searches for its production, annihilation, decay, and scattering. Assuming dark matter is produced thermally, dark matter particle masses must lie within a wide range of masses between the keV and TeV scales. Theoretical simplicity and the available technology motivated most existing direct searches for dark matter...
[]
In this talk I will present the concept of the DARWIN detector, discuss its physics reach in various channels, the main sources of backgrounds, as well as the ongoing detector design and R&D efforts.
We introduce a radically new version of the widely used DarkSUSY package, which allows to compute the properties of dark matter particles numerically. With DarkSUSY 6 one can accurately predict a large variety of astrophysical signals from dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and...