The Impact of Incorporating Shell-corrections to Energy Loss in Silicon

10 Dec 2017, 20:04
1m
Conference Center (Okinawa Institute of Science and Technology Graduate University (OIST))

Conference Center

Okinawa Institute of Science and Technology Graduate University (OIST)

OIST, Onna, Okinawa 904-0495, Japan
POSTER Simulations POSTER

Speaker

Ms Fuyue Wang (Tsinghua University)

Description

Modern tracking detectors based on hybrid or fully integrated CMOS technology are continuing to push to thinner sensors. The energy fluctuations in very thin silicon sensors significantly deviates from the Landau distribution. Therefore, we have developed a digitization setup that implements the Bichsel straggling function, which accounts for shell-effects. This enhanced simulation is important for comparing with testbeam or collision data with thin sensors as is demonstrated by a significant degradation in the position resolution compared with the standard Geant4 EM physics list. Our implementation of the Bichsel model agrees well with the multipurpose photo absorption ionization (PAI) model in Geant4 and is significantly faster. The code is made publicly available as part of the Allpix software package in order to facilitate predictions for new detector designs and comparisons with testbeam data.

Authors

Ms Fuyue Wang (Tsinghua University) Dr Benjamin Nachman (Lawrence Berkeley National Laboratory) Maurice Garcia-Sciveres (Lawrence Berkeley National Lab. (US))

Presentation materials