The ground experiment for development of Multi Image X-ray Interferometer Modules

10 Dec 2017, 21:28
1m
Conference Center (Okinawa Institute of Science and Technology Graduate University (OIST))

Conference Center

Okinawa Institute of Science and Technology Graduate University (OIST)

OIST, Onna, Okinawa 904-0495, Japan
POSTER SOI detectors POSTER

Speaker

Tomoki Kawabata (Osaka University)

Description

We propose a new type of astronomical X-ray interferometer without using mirrors. The structure is very simple, consisting of an X-ray absorption grating and an X-ray spectral imaging detector. Quasi-parallel light from a celestial object passing through the grating makes a self-image of the grating by the Talbot effect. Stacking the image with the grating pitch in the analysis provide the profile of the X-ray object. The angular resolution of the system can be arcseconds or sub-arcseconds, which are difficult to be achieved X-ray mirror systems for satellites. We call this interferometer system Multi Image X-ray Interferometer Module (MIXIM).
We started an experiment using a micro-focus X-ray source, and 4.8 $\rm{\mu m}$ pitch 17 $\rm{\mu m}$ thick Au X-ray absorption grating, and an XRPIX2b detector with a pixel size of 30 $\rm{\mu m}$. We employed charge sharing analysis to achieve finer positional resolution than the pixel size and detected the interference fringes with a magnification factor of 4.4. Our final goal is, however, parallel X-rays from celestial objects, and thus detectors with finer or comparable position resolution as the grating pitch is required. To meet this requirement, we have recently introduced a CMOS sensor developed by Gpix inc. with a small pixel size of 4.25 $\rm{\mu m}$. This device is designed for visible light application, but we irradiated X-rays and find sensitivity for them. We present the current status of these preliminary experiments for MIXIM.

Primary author

Tomoki Kawabata (Osaka University)

Co-authors

Dr Kiyoshi Hayashida (Osaka University) Mr Takashi Hanasaka (Osaka University) Hiroshi Nakajima (Osaka University) Ryo Hosono (Osaka University) Dr Takayoshi Shimura (Osaka University) Mr Hiroyuki Kurubi (Osaka University) Shota Inoue (Osaka university) Prof. Hiroshi Tsunemi (Osaka University) Prof. Hironori Matsumoto (Osaka University)

Presentation materials