Speaker
Description
Detectors based on Chemical Vapor Deposition (CVD) diamond have been
used extensively and successfully in beam conditions/beam loss monitors
as the innermost detectors in the highest radiation areas of essentially
all LHC experiments. The startup of the LHC in 2015 brought a new
milestone where the first diamond pixel modules were installed in an LHC
experiment (ATLAS) and successfully began taking data. As a result,
this material is now being discussed as a possible sensor material
for tracking very close to the interaction region and for pixelated
beam conditions/beam loss monitors of the LHC/HL-LHC upgrades where
the most extreme radiation conditions will exist.
The RD42 collaboration at CERN is leading the effort to use CVD diamond
as a material for tracking detectors operating in extreme radiation
environments. During the last three years the RD42 group has succeeded
in producing and measuring a number of devices to address specific issues
related to use at the HL-LHC. We will present status of the RD42 project with
emphasis on recent beam test results. In particular we present the latest
results on material development, the most recent results on the independence
of signal size on incident particle rate in poly-crystalline CVD
diamond pad and pixel detectors over a range of particle fluxes up to
20 MHz/cm^2 measured, and describe the most recent devices fabricated. In
addition we will present the plans for future use of the most recent devices