Conveners
Session 5: CMOS
- Gregor Kramberger (Jozef Stefan Institute (SI))
Presentation materials
The vertex- and tracking detectors at the proposed high-energy CLIC electron-positron collider will be based on small-pitch silicon pixel- or strip detectors. The requirements for these detectors include single-point position resolutions of a few microns and time stamping with an accuracy of approximately 10 ns. For the outer tracking region, fully integrated CMOS sensors are under...
The industry standard High Voltage-CMOS (HV-CMOS) technology is emerging as a very attractive option to track particles in planned future high energy physics experiments. Tracker detectors in HV-CMOS technologies combine in the same substrate material a high bias voltage to create a large depleted sensing volume, which enables fast charge collection by drift and high radiation tolerance, and...
In accordance with the High-Luminosity upgrade of the LHC (HL-LHC), the current Inner Tracker (ID) of the ATLAS detector will be replaced with an all-silicon sub-detector (ITk upgrade) comprising of pixel and micro-strip silicon sensors. A candidate technology for the outer pixel layers of the ITk is a new radiation hard monolithic pixel silicon sensor, based on High Voltage CMOS technology,...
Results of an irradiation study on full scale HV-CMOS demonstrator chips will be presented. Samples were characterised using Edge-TCT and Sr90 measurement methods. With Edge-TCT the depleted depth was estimated for different substrate resistivities and neutron fluences. The study was complemented with measurements of charge deposited by MIPs from a Sr90 source. All measurements were performed...
The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resitivity substrates with on-chip high-voltage biasing to achieve large depleted active sensor volume. We characterized depleted...