Prof. Dr. S. Schael (Dean Faculty of Mathematics, Computer Science and Natural Sciences)
Neutrino flavor oscillation experiments have firmly established that neutrinos do have non-zero masses. This is a contradiction to the minimal Standard Model (SM) of Particle Physics. While being insensitive to the absolute neutrino mass scale, flavor oscillation experiments provide lower mass limits, depending on the neutrino mass ordering. Direct neutrino mass measurements establish upper...
With the discovery of the 3rd neutrino mixing angle, theta13, in 2012 a door was opened to answer the remaining unknowns in neutrino oscillations: the mass hierarchy, whether theta23 is larger/smaller or exactly 45 degrees, and whether CP symmetry is violated. Several experiments have exciting new data and are exploring this landscape. I will review the current results and consider the...
The Borexino liquid scintillator neutrino observatory is devoted to perform high- precision neutrino observations, and it is optimized for measurements in the low energy (sub- MeV) region of the neutrino spectrum. The direct measurements, already accomplished, of the interaction rates from pp, 7Be, pep, 8B neutrinos put Borexino in the unique situation of being the only experiment able to...
I review the experimental indications in favor of short-baseline neutrino oscillations
and I discuss their interpretation in the framework of 3+1 neutrino mixing with a
sterile neutrino at the eV scale. I show that the recent results of the NEOS and DANSS
reactor neutrino experiments give a new model-independent indication in favor of
short-baseline electron antineutrino disappearance,...
The observation of neutrinoless double beta decay would unambiguosly demonstrate that neutrinos are Majorana particles and would provide unique information about the ordering and absolute scale of neutrino masses. This very rare decay is actively searched for in a number of candidate isotopes. It violates lepton-number and is predicted by many extensions of the standard model. The most recent...
High-energy neutrinos are an important messenger particle to understand the high-energy universe. In 2013, the IceCube Neutrino Observatory has reported the first observation of a flux of high-energy astrophysical neutrinos with energies reaching above PeV. However, the sources of these neutrinos remain a puzzle. Since then, these measurements have been refined and the observation has been...
The field of reactor neutrino physics has accumulated a series of anomalies over the years, the most recent of which occurs with reactor antineutrinos. The appearance of such an anomaly relies on an exquisite knowledge of both beta spectrum shapes and isotopic abundance inside the reactor medium. In an attempt to mitigate the uncertainties of the latter, a conversion method is typically used...
The current status of our knowledge of the
3-neutrino mixing parameters and of
the CP violation in the lepton sector is summarised.
The non-Abelian discrete symmetry approach to understanding the
observed pattern of neutrino mixing and the related predictions
for neutrino mixing angles and leptonic Dirac CP violation
are reviewed.
In the recent years neutrino physics achieved very important goals like the discovery of neutrino oscillations, proving that neutrino have mass.
These discoveries open the door to even more ambitious searches like the hunt for CP violation in neutrino oscillations, the quest for the absolute neutrino mass and the ordering of the three neutrino masses, the question if neutrinos are their own...
The ground-state hyperfine structure (GS-HFS) of hydrogen is known from the hydrogen maser to relative precision of 10$^{–12}$. It is of great interest to measure the same quantity for its antimatter counterpart, antihydrogen, to test the fundamental CPT symmetry, which states that all particles and antiparticles have exactly equal or exactly opposite properties. Since CPT is strictly...
The Baryon Antibaryon Symmetry Experiment (BASE-CERN) at CERN’s antiproton decelerator facility conducts high-precision comparisons of the fundamental properties of protons and antiprotons, such as their charge-to-mass ratios, magnetic moments and lifetimes. These experiments provide sensitive tests of charge-parity-time (CPT) invariance in the baryon sector. BASE was approved in 2013 and has...
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million. We calculate the expected bounds that can be extracted from existing HERA data and the reach of the...
Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second power or higher (which appears in a traditional search for the dark...
The recent decade saw a tremendous improvement of sensitivities in direct searches for dark matter, which keep improving at a rate of about an order of magnitude every couple of years. The major improvements so far have been mostly in scaling up the size and exposure of the experiments, with all of the related challenges.
I will review some of the basic rules dominating this line of searches,...
The ACME Collaboration has made the most sensitive measurement of the electric dipole moment of the electron. This moment is of great interest because the Standard Model predicts it should be too small to measure, supersymmetric and other model predict it should be small but measurable, and not nearly enough CP violation has been discovered to account for how a universe could survive the big...
W. Heil, F. Allmendinger, O. Grasdijk, K. Jungmann, H.-J. Krause, A. Offenhäusser, M. Repetto,U. Schmidt, L. Willmann, S. Zimmer
(MIXed collaboration)
a Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
b Physikalisches Institut, Ruprecht-Karls-Universität, 69120 Heidelberg, Germany
c University of Groningen, The Netherlands
d Peter Grünberg Institut (PGI-8),...
This talk will cover the latest results on the permanent electric dipole moment (EDM) of neutral $^{199}$Hg atoms. The EDM is manifested as a small perturbation to the Larmor precession frequency due to the interaction energy of the electric dipole with a static electric field. The atoms are prepared in four separate glass vapor cells using optical pumping with resonant 254 nm laser light and...
Electric Dipole Moments (EDMs) of elementary particles are important candidates
for CP violation and hence possible sources for the observed matter-antimatter
asymmetry in the universe. The Jülich Electric Dipole Moment Investigation
(JEDI) collaboration is searching for EDMs of light nuclei. Ideally this would
be done in a designated storage ring using the frozen spin concept. Such a ring...
Searches for electric dipole moments (EDM) of fundamental particles are considered one of the most sensitive approaches to physics beyond the Standard Model of particle physics (SM). A non-SM mechanism violating the combined symmetry of charge conjugation and parity inversion (CP-violation) could help to explain the observed baryon asymmetry of the Universe while manifesting itself as electric...
The final interpretation of the upcoming new measurements of anomalous magnetic moment of the muon, g-2, at Fermilab and at JPARC, require an improved Standard Model prediction of this quantity. The Standard Model calculation is entirely limited by strong interactions with two dominating contributions: (i) the hadronic vacuum polarization contribution, and (ii) the hadronic-light-by-light...
The magnetic moment of the muon $g-2$ is sensitive to all
interactions of the Standard Model and to a variety
of hypothetical new physics scenarios. Future measurements
will lead to important constraints on new physics, and they
might even establish the existence of new physics contributions
to g-2. The talk will describe the theoretical calculations of
g-2 both in the SM and beyond the SM....
Ultracold neutrons (UCN) have been established as a valuable tool in precision fundamental neutron physics reseach since many years.
In order to perform precision measurements with UCN, strong and reliable UCN sources are needed, and such sources are being operated at several universities and research centers world-wide. The density of UCN provided to experiments at a UCN source is an...
With precise determinations of the lifetime and angular correlations in the decay of the neutron, we can characterize the left-handed nature of the weak interaction and search for the influence of new interactions. The Nab experiment's primary goal is to determine the ratio of the hadronic axial-vector and vector form factors with a goal sensitivity of $\delta\lambda/\lambda\sim0.03\%$, which...
Nuclear beta decay has a long-standing history of shaping and testing the standard model of particle physics, and it continues to this day with elegant, ultra-precise low-energy nuclear measurements. Experiments observing the angular correlations between the electron, neutrino and recoil momenta following nuclear beta decay can be used to search for exotic currents contributing to the...
Searches for violations of the fundamental discrete symmetries parity (P), time reversal (T) and charge conjugation (C) provide guidelines for model building beyond the Standard Model of the electroweak interactions (SM).
Measurements of atomic parity violation (APV) provide a test the electroweak interactions at low energies, while other experiments like searches for permanent electric...
In the study of electroweak interactions, atomic parity violation (PV) experiments form a powerful tool, providing valuable information about the Standard Model and low-energy nuclear physics. Ytterbium (Yb) and dysprosium (Dy) are good systems for such studies, due to their strong PV effect (to be confirmed for Dy) and the availability of many stable isotopes. This brings within reach the...
Parity violation (PV), first observed in semileptonic decays, has been determined precisely for quarks and leptons as part of the standard model. At the hadronic level, it offers a unique probe of nucleon structure and the underlying low-energy behavior of non-perturbative QCD. The hadronic weak interaction is characterized in terms of five spin and isospin dependent S-P transition...
NPDGamma is an experimental collaboration which for over 20 years has made an effort in research and development to measure the parity-violating gamma-ray asymmetry in the capture of polarized low-energy neutrons on hydrogen. This asymmetry is dominated by a $\Delta I=1$ ${}^{3}S_{1}-{}^{3}P_{1}$ parity-odd transition in the $n-p$ system. In the more traditional theoretical framework, the...
The decay K+->pi+nunu, with a very precisely predicted branching ratio of less than 10-10, is one of the best candidates to reveal indirect effects of new physics at the highest mass scales. The NA62 experiment at CERN SPS is designed to measure the branching ratio of the K+->p+nn with a decay-in-flight technique, novel for this channel. NA62 took data in 2016, 2017 and another year run is...
Precision measurements of magnetically trapped antihydrogen provides a unique and pow-
erful way to test fundamental symmetries. A cornerstone of the standard model, CPT
symmetry demands that the spectrum of antihydrogen be identical to that of its ordinary
matter counterpart. Of particular interest is the 1S-2S transition which has been mea-
sured in hydrogen[1] with the remarkable relative...
In recent years, increasingly larger amounts of cold antihydrogen has been confined in the ALPHA magnetic trap [1] and has become available to perform precise measurements of its spectrum [2, 3]. Owing to this advancement, the Universality of Free Fall, a pillar of General Relativity, is put to test in a novel apparatus, named ALPHA-g, scheduled to take its first data in 2018. The ALPHA-g...
The KLOE-2 experiment continues and extends the program of its predecessor KLOE in the field of discrete symmetry tests with the K meson system, among other studies which comprise light meson spectroscopy, dark matter searches and $\gamma\gamma$ physics. Together, KLOE and KLOE-2 have recorded the largest sample (almost 8 fb$^{-1}$) of e+e- collisions at the energy equal to $\phi$ meson mass,...
Positronium and muonium, being purely leptonic, are very interesting systems to test bound state QED free of finite size effects and hadronic corrections [1]. They are also very sensitive probes to search for New Physics [2] and can be used to extract fundamental constants such as the muon mass and magnetic moment [3].
In this talk, we report the current status of the ongoing experiment...
The hydrogen molecule is the smallest neutral chemical entity and a benchmark system of quantum physics and chemistry. The comparison between highly accurate measurements of transition frequencies and level energies with quantum calculations including all known phenomena (relativistic, vacuum polarization and self energy) provides a tool to search for physical phenomena in the realm of the...
The precise knowledge of the atomic masses of various light nuclei, e.g. of the proton, deuteron, helion and triton are of utmost importance for several tests of fundamental physics. For example, the mass of the proton itself and the mass ratio of the electron and the proton are important input parameters for experiments in atomic physics. Furthermore, an essential consistency check of the...
Laser spectroscopy of muonic hydrogen [1,2] yielded a proton rms charge radius which is 4% (or ~6 sigmas) smaller than the CODATA value [3]. This discrepancy is now called the "proton radius puzzle" [4]. Also the deuteron charge radius from muonic deuterium [5] is 6 sigmas smaller than the CODATA value, but consistent with the smaller proton inside the deuteron.
These smaller charge radii,...
The mean lifetime for $\beta$-decay of a free neutron is an interesting empirical target because it is an input for calculation of light element abundances in the early universe, affects predictions from cosmic microwave background data about the number of effective neutrino species, and in combination with other $\beta$-decay observables can provide sensitive tests for physical phenomena not...
The Qweak experiment precisely measures the proton's weak charge using parity-violating elastic electron scattering from the proton at Jefferson Laboratory. The Standard Model makes a firm prediction for the proton's weak charge, thus providing a sensitive test for new physics beyond the Standard Model. This talk will cover the measurement methodology, key technical challenges, and the most...
We are developing experiments to study parity nonconservation effects in neutral francium atoms at the ISAC radioactive beam facility at TRIUMF. We are using laser cooling and trapping techniques to prepare the atoms for our measurements and our current effort is based on optical spectroscopy of Stark induced 7s-8s atomic transitions aiming at Standard Model test of the strength of the...
In this talk I will review the current status of the radioisotopes trapping program at the Soreq Applied Research Accelerator Facility (SARAF), and prospects for measurements at the upgraded accelerator: SARAF-II.
In our new lab complex, situated above the SARAF target room, we utilize two systems: An electrostatic-ion-beam-trap,designed for trapping various radioactive ions, starting with...
Precision measurements of CP violating observables in the decays of b and c hadrons are powerful probes to search for physics beyond the Standard Model.
The most recent results on CP violation in the decay, mixing and interference of both b and c hadrons obtained by the LHCb Collaboration with Run I and years 2015-2016 of Run II are reviewed. In particular world best constraints and world...
\documentclass[12 pt]{article}
\author{Falastine Abusaif/for the JEDI collaboration/\RWTH Aachen University/J\"ulich Forschungszentrum}
\begin{document}
\title{Development of compact highly sensitive beam position monitors for storage rings}
\maketitle
\begin{abstract}
The history of the search for electric dipole moment (EDM)takes us back in time for more than five decades. EDMs have gained...
The Jülich Electric Dipole moment Investigation (JEDI) Collaboration works on a measurement of the electric dipole moment (EDM) of charged hadrons using a storage ring. Such a dipole moment would violate CP symmetry, providing a test for physics beyond the Standard Model. The JEDI experiment requires a small beam orbit RMS in order to control systematic uncertainties.
Therefore an ongoing...
The direct measurement of the proton or deuteron Electric Dipole Moment (EDM) has never been performed before. These experiments can be done at electrostatic storage ring. As a starting point the magnetic storage ring COSY at Forschungszentrum Jülich can be used. It will require implementation of the electrostatic or electromagnetic beam-bending elements. For testing the electrodes material,...
Precision measurements of the β-energy spectrum in nuclear and neutron decays have a great potential to find possible signatures of new physics beyond the standard electroweak model. Such signatures would produce a distortion of the β-energy spectrum relative to the Standard Model prediction. In Gamow-Teller transitions, these distortions would indicate the presence of the exotic tensor type...
In precision searches for electric dipole moments of charged particles using storage rings, one needs to quantify background signals that stem from false rotations of the magnetic dipole moments in the horizontal magnetic fields of the storage ring. Mapping the spin tune response of a machine with artifically applied longitudinal magnetic fields allows one to probe the magnetic imperfection...
We are developing experiments to study parity nonconservation effects in neutral francium atoms at the ISAC radioactive beam facility at TRIUMF. We are using laser cooling and trapping techniques to prepare the atoms for our measurements and our current effort is based on optical spectroscopy of Stark induced 7s-8s atomic transitions aiming at Standard Model test of the strength of the...
The decay of the free neutron into a proton, electron and antineutrino is the simplest example of the nuclear beta decay. The lifetime of this process is measured either by beam or by storage experiments. Currently, their results show a discrepancy of about 7 s which is also known as the "neutron lifetime puzzle". Two major systematic effects in neutron experiments are losses due to...
The JEDI (Jülich Electric Dipole Investigations) Collaboration aims to carry out a long term project for the measurement of the permanent electric dipole moments of charged particles in a storage ring. As a proof-of-concept, the COoler SYnchrotron (COSY) was equipped with a waveguide RF Wien filter designed to operate at some harmonics of the spin precession frequency ranging from 0.1 to 2...
The JEDI (Jülich Electric Dipole moment Investigations) collaboration performs
a set of experiments at the COSY storage ring in Jülich, within the R&D phase to search for the Electric Dipole Moments (EDMs) of charged particles. A measurement of proton and deuteron EDMs is a sensitive probe of yet unknown CP violation. An EDM observation would also be an indication for physics beyond the...
The Jiangmen Underground Neutrino Observatory (JUNO) will be a 20\,kt liquid scintillator neutrino detector located at Kaiping, Jiangmen in South China. With the data aquisition starting in 2021, its main goal is the determination of the neutrino mass hierarchy from a precise measurement of the energy spectrum of anti-electron-neutrinos 53\,km away from the reactor. To precisely measure the...
In the framework of the Standard Model, CPT symmetry demands the same fundamental prop-
erties for matter and antimatter. The precise measurement of the ground state hyperfine structure
of antihydrogen and its comparison to that of hydrogen is a sensitive test of CPT invariance. A
Ramsey type beam spectroscopy method [1] has the potential to improve this precision by a factor
of 10 over the...
Antimatter is believed to be affected by gravity in exactly the same way as ordinary matter for a variety of good reasons [1], however this has never been measured directly. This will be tested by the ALPHA-g project, which uses a new vertical antihydrogen trap based on the previous ALPHA design (Antihydrogen Laser Physics Apparatus, the first experiment to trap antihydrogen in 2010 [2]). As...
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron
or helion, in fact, of any finite system necessarily involves the breaking of a symmetry,
either by the presence of external fields (i.e., electric fields leading to the case of
induced EDMs) or
explicitly by the breaking of the discrete parity and time-reflection symmetries in the
case of permanent EDMs.
Recent...
Heavy meson decays into light hadrons are a prime source to access CP violating phases. Since these show up via the interference of different amplitudes it is mandatory - especially to get sensitive to very small signals as expected, e.g.,in D-decays - to model independently control the hadronic final state interactions. In this talk it is discussed to what extend this goal can be achieved...
Time dependent CP-violation phenomena are a powerful tool to precisely measure fundamental parameters of the Standard Model and search for New Physics. The Belle II experiment is a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric $e^+ e^-$ collider. The accelerator has already successfully completed the first phase of commissioning in 2016 and...
Time Reversal Invariance Violating (TRIV) effects in neutron transmission through nuclear targets are discussed. The absence of final state interactions for the set of specific observables makes these experiments complementary to neutron and atomic electric dipole moment (EDM) measurements. We explore important advantages of the search for TRI violation in neutron nuclei interactions and show...
Present status of tests of QED with highly charged ions is discussed.
The high-precision calculations of the Lamb shift, hyperfine splitting,
and bound-electron g factor are compared with the corresponding experimental
data. The calculations of the electron-positron pair-creation probabilities in low-energy heavy-ion collisions are considered. Special attention is focused on tests of QED at...
Our experimental group, MuSEUM (Muonium Spectroscopy Experiment Using Microwave), has been doing a precise spectroscopy of muonium ground state hyperfine splitting (MuHFS) with high-intensity pulsed muon beam supplied from J-PARC. We aim ten-fold improvement of the preceding measurement of the experimental value of MuHFS both at zero magnetic field and in high magnetic field (1.7 T). Muonium...
The ultra-precise determination of the g-factor of highly charged ions is a unique possibility to test the validity of the Standard Model, particularly Quantum Electrodynamics (QED) in extreme electric fields up to 1016 V/cm. While the weak-field regime has been exquisitely tested, in the presence of strong fields higher-order contributions beyond the Standard Model might become...
Hydrogen is the best studied physical system, both theoretically and experimentally, therefore antihydrogen, the
antimatter equivalent of hydrogen, offers a unique way to test matter-antimatter symmetry. In particular, the CPT
invariance theorem implies that hydrogen and antihydrogen have the same spectrum. The ALPHA experiment at
CERN can synthesize and confine a large number...