Conveners
Mini-workshop on Highly Ionising Avatars of New Physics
- Dragos-Victor Anghel (IFIN-HH)
Mini-workshop on Highly Ionising Avatars of New Physics
- Dragos-Victor Anghel (IFIN-HH)
Mini-workshop on Highly Ionising Avatars of New Physics
- There are no conveners in this block
Mini-workshop on Highly Ionising Avatars of New Physics
- There are no conveners in this block
The IceCube Neutrino Observatory, located at the geographic South Pole, is the world’s largest neutrino telescope. It instruments one cubic kilometer of ice with more than 5000 optical sensors and is designed to detect the light emitted by particles produced in neutrino-nucleon interactions in the ice.
Magnetic monopoles are hypothetical particles with non-zero magnetic charge, and are...
MoEDAL, is a pioneering LHC experiment designed to search for anomalously ionizing messengers of new physics. It started data taking at the LHC at a centre-of-mass energy of 13 TeV, in 2015. Its ground breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is...
The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to find monopoles we discuss new signatures to detect them. These signatures include multiphoton events, monopole charge scattering and charge magnetic dipole scattering.
We present a study of searching for massive long-lived particles at the MoEDAL detector. MoEDAL is sensitive to highly ionizing avatar such as magnetic monopoles or massive (meta-)stable charged particles and we focus on the latter in this talk. In the ATLAS and CMS analyses for long-lived particles, some conditions are usually required for triggering or reducing the cosmic ray background,...
Solid state breakdown counters (SSBC) combine threshold properties of nuclear track detectors (NTDs) with the convenience of electronic event registration in real time. Their simple low-cost design, combined with high dE/dx thresholds, make them an attractive candidate for experiments searching for magnetic monopoles and other highly ionizing exotic particles. In one use case, the traditional...
The subtle interplay of infrared singularities in quantum electrodynamics and perturbative quantum gravity and information theoretic issues such as quantum entanglement between soft and hard degrees of freedom will be discussed. It will be argued that the inevitable loss of soft photons and gravitons in a scattering experiment leads to decoherence of the out-going state, that this decoherence...
We propose a model for a self-gravitating electromagnetic monopole in a string-inspired model in the presence of Kalb-Ramond torsion and dilaton.The model includes a regularisation of the core of the monopole. We give arguments for the existence of a thin shell structure inside the core and a bag-like structure of the monopole. The regularisation of the inner-core involves a de Sitter metric...
The existence of magnetic charges remains one of the great questions in high energy physics and their search has gained momentum as recent models predict these may be observable at current colliders. They appear in field theories in two forms: the widely studied but heavily suppressed monopole with structure (soliton), and the not so well covered point like monopole. The latter was first...
Highly-ionizing particles are predicted by several scenarios of Beyond the Standard Model physics. On the one side, they can be massive long-lived charged particles, characterized by ionization much higher than any Standard Model particle with unit charge, due to their velocity being significantly below the speed of light. On the other, high ionization can come from multiple charge, predicted...
The Dirac magnetic monopoles , if exist, can be probed in the collider experiments. Earlier only the Drell-Yan production mechanism of magnetic monopoles was used to look for these particles. But the photon-fusion production mechanism of magnetic monopoles is the dominant production mechanism in terms of cross-section at the LHC energy. We will discuss the photon-fusion production of spins 0,...
An overview of Timepix3 pixel detectors capabilities for highly ionizing particle 3D tracking will be given. The emphasis will be put on their methodological adaptation specifically towards the search of stable massive charged particles, both electrically and magnetically, in particular to a magnetic monopole within the MoEDAL experiment. The detector use will profit from its capability to...