9–12 Apr 2018
CERN
Europe/Zurich timezone
There is a live webcast for this event.

Classification of decays involving variable decay chains with convolutional architectures

11 Apr 2018, 16:30
20m
500/1-001 - Main Auditorium (CERN)

500/1-001 - Main Auditorium

CERN

400
Show room on map

Speaker

Justin Tan (The University of Melbourne, Belle II)

Description

Vidyo contribution

We present a technique to perform classification of decays that exhibit decay chains involving a variable number of particles, which include a broad class of $B$ meson decays sensitive to new physics. The utility of such decays as a probe of the Standard Model is dependent upon accurate determination of the decay rate, which is challenged by the combinatorial background arising in high-multiplicity decay modes. In our model, each particle in the decay event is represented as a fixed-dimensional vector of feature attributes, forming an $n \times k$ representation of the event, where $n$ is the number of particles in the event and $k$ is the dimensionality of the feature vector. A convolutional architecture is used to capture dependencies between the embedded particle representations and perform the final classification. The proposed model performs outperforms standard machine learning approaches based on Monte Carlo studies across a range of variable final-state decays with the Belle II detector.

Intended contribution length 20 minutes

Author

Justin Tan (The University of Melbourne, Belle II)

Presentation materials