9–12 Apr 2018
CERN
Europe/Zurich timezone
There is a live webcast for this event.

Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators

10 Apr 2018, 11:00
20m
222/R-001 (CERN)

222/R-001

CERN

200
Show room on map

Speaker

Michela Paganini (Yale University (US))

Description

In this contribution, we present a method for tuning perturbative parameters in Monte Carlo simulation using a classifier loss in high dimensions. We use an LSTM trained on the radiation pattern inside jets to learn the parameters of the final state shower in the Pythia Monte Carlo generator. This represents a step forward compared to unidimensional distributional template-matching methods.

Intended contribution length 20 minutes

Authors

Luke Percival De Oliveira Michela Paganini (Yale University (US)) Ben Nachman (University of California Berkeley (US)) Steve Mrenna (Fermi National Accelerator Lab. (US)) Chase Owen Shimmin (Yale University (US)) Paul Louis Tipton (Physics Department - Yale University)

Presentation materials