Conveners
Nuclear structure/reactions
- Jose Manuel Quesada Molina (Universidad de Sevilla (ES))
\documentclass[aps]{revtex4}
\usepackage{graphicx}
\textwidth150mm
\textheight220mm
\oddsidemargin10mm
\evensidemargin10mm
\topmargin-10mm
\begin{document}
\title
{\bf Geometric shapes describing nuclear reaction mechanisms such as fusion, alpha emission and capture, binary and ternary fission, planar fragmentation and n-alpha nuclei}
\author{G. Royer, J. Jahan, N. Mokus}
\address
...
Like in classical physics (pendulum, spring, ...), opposite interactions (potential and kinetic) generate oscillating behaviours in quantum physics. This is observed for masses resulting from Schr\"{o}dinger equations but also for widths of hadronic families and excited state nuclei masses.
The masses are ordered by increasing values, and the successive mass differences are plotted versus...
Results from classical molecular dynamics simulations of infinite nuclear systems with varying density, temperature and isospin content are used to calculate the symmetry energy at low nuclear densities at several temperatures. The results show an excellent agreement with the experimental data (from Texas A&M Cyclotron Institute) and corroborate the claim that the formation of clusters has a...
Atomic nuclei are one of the most multifaceted systems in the universe. The approach of studying these complex systems through the use of global nuclear models has been a cornerstone of LANL and proven insightful to a wide variety of applications. We report on recent progress made by combining nuclear structure calculations, e.g. from Quasi-particle Random Phase Approximation (QRPA), using the...