Speaker
Description
The JUNGFRAU is a hybrid photon pixel detector developed at the Paul Scherrer Institut for free electron laser and synchrotron applications.
Each detector module consists of half a million pixels of $75 \; \mu \mathrm{m}$ pitch, arranged in $1024 \times 512$ arrays for a sensitive area of approximately $8\times4 \; \mathrm{cm}^2$. Eight $256 \times 256$ pixel ASICs are bump-bonded to a single $320 \; \mu \mathrm{m}$ thick silicon sensor. JUNGFRAU is a charge integrating detector and features three automatically switching gains per pixel, which adjust the amplification factor to the amount of deposited charge. This enables single photon sensitivity, while ensuring a dynamic range over four orders of magnitude [1]. Modules can be combined in various configurations to produce larger systems. A general overview of the detector and its performance will be presented, as well as details of the conversion of detector output to measured energy.
JUNGFRAU has been designed primarily for SwissFEL [2], which is now starting operation at PSI. For the pilot experiment phase, small JUNGFRAU systems were installed in the Alvra and Bernina end stations. Results from the commissioning and first user experiments will be presented.
JUNGFRAU has also been used at synchrotrons in proof-of-principle macro-molecular crystallography experiments with pink and monochromatic beam. Experience of using the JUNGFRAU away from optimal operating conditions will be shared, and the capability of JUNGFRAU for synchrotron applications will be demonstrated.
[1] A. Mozzanica et al., “Characterization results of the JUNGFRAU full scale readout ASIC” 2016 JINST 11 C02047
[2] C. Milne et al., “SwissFEL: The Swiss X-ray Free Electron Laser” 2017 Appl. Sci. 7(7), 720