Speaker
Description
X-ray phase contrast imaging provides a method to distinguish materials with similar density and effective atomic number, which otherwise would be difficult using conventional X-ray absorption [1]. In the recent decade, multiple methods have been developed to acquire X-ray phase contrast images using incoherent laboratory sources. One of these is the Double Masked Edge Illumination (DM-EI) method. DM-EI enables a large field of view and makes it possible to utilize the full energy range of conventional X-ray laboratory sources [2]. However, the method needs a minimum of two image acquisitions to do a full phase retrieval, and it requires relatively complicated mask apertures or even additional sample exposures to make a two-dimensional phase contrast image.
We have developed, and experimentally tested, a low dose, single mask, edge illumination method that enables two-dimensional phase contrast images in a single shot (Figure 1). The method is based on the technique originally proposed by F. Krejci et al. [3], and uses a micro focus source, a two-dimensional mask, and an Advapix detector, which contains the Timepix3 chip developed by the Medipix consortium. By using a highly absorbing, pre sample tungsten mask, our single shot method is capable of producing phase contrast images at low sample radiation dose and is applicable for both hard and soft X-rays. In addition to this, the method shows great potential for further development by using the Timepix3’s fast time of arrival information.