Speaker
Description
The development of lateral position sensitive detector for EUV irradiation is important for use in the lithographical equipment for 13.5 nm, which is the new standard in semiconductor industries.Using a scintillator (CsI(Tl)) at 13.5 nm wavelength produces ~6 light photons which results in 6 eh-pairs in the detector. Direct conversion produces 26 eh-pairs in the silicon detector, which is more than 4 times as efficient. Producing 13.5 nm needs hot dense plasma or a synchrotron source. By filtering hot dense plasma by using multilayer Mo/Si mirrors, a beam of a wavelength 13.5 nm is generated. Several mirrors can be involved which makes a measurement of the beam position necessary for optimal beam performance, homogeneous wave front and increased brightness. Therefore a position sensitive direct conversion detector for 13.5 nm is needed.
Two different types of detector are tested, n in p-substrate and p in n-substrate, silicon lateral position sensitive detectors. The detectors are manufactured by Sitek electro optics. The passivation of surface is by oxidation, oxynitride, and titanium annealed at 400 °C for 1 hour (forming gas annealing). The layer thicknesses (~10 nm) have been simulated by using MCNP to keep control of the attenuation. Stress measurement have been done at Elettra Sincrotrone Trieste using the beam line for Circular Polarization