24–28 Jun 2018
Sundsvall
Europe/Zurich timezone

SIMULATION AND EVAULATION OF HIGH PERFORMANCE COST-EFFECTIVE POSITRON EMISSION MAMMOGRAPHY (PEM) SCANNER WITH LASER INDUCED OPTICAL BARRIER TECHNIQUES

26 Jun 2018, 15:10
20m
Quality Hotel, Folkets Hus (Sundsvall)

Quality Hotel, Folkets Hus

Sundsvall

Esplanaden 29 Sundsvall, Sweden
Oral Oral

Speaker

Dr Dilber Uzun Ozsahin (Near East University)

Description

Breast cancer is the main cause of tumor deaths in women. Early diagnosis of the disease is widely approved as being essential for effective treatment. An estimate of about 246,660 new breast cancer cases was done in 2017, and the death rate rises to about 40,450 in that year [1]. Due to these reasons, breast cancer diagnosis at the very early stage is important in order to reduce the incidences and mortality rates. Positron Emission Mammography (PEM) is a breast dedicated imaging device which uses pair of annihilation gamma photons to detect cancerous breast tissues. The PEM device is compact in nature with a reduced field of view to cover the entire breast region, and it employs few detector modules which makes it cost-efficient. To effectively diagnose breast cancer at a very early stage, a device with high spatial resolution and sensitivity is required. PEM detectors based on semiconductor materials are characterized by an excellent intrinsic system spatial resolution but are not cost-effective [2], whereas detectors based on scintillator crystals are cost-effective but have limited intrinsic resolution to detect small breast lesions. This study focuses on improving the resolution of scintillator detectors by simulating a PEM scanner employing 1 × 1× 10 mm3 laser processed [3] scintillator crystal such as Lutetium-Yttrium Oxyorthosilicate (LYSO). The simulation was done with Geant4 application for emission tomography (GATE) software, and performance evaluation was done with National Electrical Manufacturers Association (NEMA) phantom studies using Maximum Likelihood Expectation Maximization (MLEM) technique. The scanner geometry has 110 mm trans-axial field of view (FOV) and 128 mm axial FOV. Evaluation result showed that the scanner has 7.6% system sensitivity and 1 mm system spatial resolution.

Keywords: PEM; LYSO, GATE; Semiconductor materials; Scintillator crystals; laser induced optical barrier

REFERENCES
1. Li, L., et al., (2015). Performance Evaluation and Initial Clinical Test of the Positron Emission Mammography System (PEMi). IEEE Transactions on Nuclear Science, 62(5), 2048-2056.
2. D Uzun., et al., (2014) Simulation and evaluation of a high resolution VIP PEM system with a dedicated LM-OSEM algorithm, Journal of Instrumentation, Volume 9 C05011
3. Sabet, et al., (2016). Novel laser‐processed CsI: Tl detector for SPECT. Medical physics, 43(5), 2630-2638.

Primary authors

Mr Musa Sani Musa (Department of Biomedical Engineering, Near East University) Ms Tazeen Sharif (Department of Electrical Engineering, College of Engineering, Ajman University, United Arab Emirates) Dr Ilker Ozsahin (Near East University) Dr Dilber Uzun Ozsahin (Near East University)

Presentation materials

There are no materials yet.